
Fixed-Point Toolbox™

User’s Guide

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Fixed-Point Toolbox™ User’s Guide

© COPYRIGHT 2004–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 2004 First printing New for Version 1.0 (Release 14)
October 2004 Online only Version 1.1 (Release 14SP1)
March 2005 Online only Version 1.2 (Release 14SP2)
September 2005 Online only Version 1.3 (Release 14SP3)
October 2005 Second printing Version 1.3
March 2006 Online only Version 1.4 (R2006a)
September 2006 Third printing Version 1.5 (R2006b)
March 2007 Fourth printing Version 2.0 (R2007a)
September 2007 Online only Revised for Version 2.1 (R2007b)
March 2008 Online only Revised for Version 2.2 (R2008a)
October 2008 Online only Revised for Version 2.3 (R2008b)
March 2009 Online only Revised for Version 2.4 (R2009a)
September 2009 Online only Revised for Version 3.0 (R2009b)
March 2010 Online only Revised for Version 3.1 (R2010a)
September 2010 Online only Revised for Version 3.2 (R2010b)
April 2011 Online only Revised for Version 3.3 (R2011a)
September 2011 Online only Revised for Version 3.4 (R2011b)
March 2012 Online only Revised for Version 3.5 (R2012a)
September 2012 Online only Revised for Version 3.6 (R2012b)

Contents

Fixed-Point Concepts

1
Fixed-Point Data Types . 1-2

Scaling . 1-4

Precision and Range . 1-5
Range . 1-5
Precision . 1-6

Arithmetic Operations . 1-10
Modulo Arithmetic . 1-10
Two’s Complement . 1-11
Addition and Subtraction . 1-12
Multiplication . 1-13
Casts . 1-19

fi Objects and C Integer Data Types 1-22
Integer Data Types . 1-22
Unary Conversions . 1-24
Binary Conversions . 1-25
Overflow Handling . 1-28

Working with fi Objects

2
Ways to Construct fi Objects . 2-2
Types of fi Constructors . 2-2
Examples of Constructing fi Objects 2-3

Cast fi Objects . 2-12
Overwriting by Assignment . 2-12

v

Ways to Cast with MATLAB Software 2-12

fi Object Properties . 2-17
Data Properties . 2-17
fimath Properties . 2-17
numerictype Properties . 2-19
Setting fi Object Properties . 2-20

fi Object Functions . 2-23

Fixed-Point Topics

3
Set Up Fixed-Point Objects . 3-2
Create Fixed-Point Data . 3-2

View Fixed-Point Number Circles 3-18

Perform Binary-Point Scaling . 3-31

Develop Fixed-Point Algorithms . 3-37

Calculate Fixed-Point Sine and Cosine 3-48

Calculate Fixed-Point Arctangent 3-70

Compute Sine and Cosine Using CORDIC Rotation
Kernel . 3-96

Perform QR Factorization Using CORDIC 3-102

Compute Square Root Using CORDIC Hyperbolic
Kernel . 3-142

vi Contents

Convert Cartesian to Polar Using CORDIC Vectoring
Kernel . 3-148

Set Data Types Using Min/Max Instrumentation 3-154

Convert Fast Fourier Transform (FFT) to Fixed
Point . 3-168

Detect Limit Cycles in Fixed-Point State-Space
Systems . 3-179

Compute Quantization Error . 3-191

Normalize Data for Lookup Tables 3-199

Implement Fixed-Point Log2 Using Lookup Table 3-205

Implement Fixed-Point Square Root Using Lookup
Table . 3-210

Set Fixed-Point Math Attributes . 3-215

Working with fimath Objects

4
fimath Object Construction . 4-2
fimath Object Syntaxes . 4-2
Building fimath Object Constructors in a GUI 4-4

fimath Object Properties . 4-6
Math, Rounding, and Overflow Properties 4-6
Setting fimath Object Properties . 4-7

fimath Properties Usage for Fixed-Point Arithmetic . . 4-11
fimath Rules for Fixed-Point Arithmetic 4-11
Binary-Point Arithmetic . 4-13

vii

[Slope Bias] Arithmetic . 4-17

fimath for Rounding and Overflow Modes 4-20

fimath for Sharing Arithmetic Rules 4-22
Default fimath Usage to Share Arithmetic Rules 4-22
Local fimath Usage to Share Arithmetic Rules 4-22

fimath ProductMode and SumMode 4-25
Example Setup . 4-25
FullPrecision . 4-26
KeepLSB . 4-27
KeepMSB . 4-28
SpecifyPrecision . 4-30

Working with fipref Objects

5
fipref Object Construction . 5-2

fipref Object Properties . 5-3
Display, Data Type Override, and Logging Properties 5-3
fipref Object Properties Setting . 5-3

fi Object Display Preferences Using fipref 5-5

Underflow and Overflow Logging Using fipref 5-7
Logging Overflows and Underflows as Warnings 5-7
Accessing Logged Information with Functions 5-9

Data Type Override Preferences Using fipref 5-12
Overriding the Data Type of fi Objects 5-12
Data Type Override for Fixed-Point Scaling 5-13

viii Contents

Working with numerictype Objects

6
numerictype Object Construction 6-2
numerictype Object Syntaxes . 6-2
Example: Construct a numerictype Object with Property
Name and Property Value Pairs 6-3

Example: Copy a numerictype Object 6-4
Example: Build numerictype Object Constructors in a
GUI . 6-5

numerictype Object Properties . 6-7
Data Type and Scaling Properties . 6-7
Set numerictype Object Properties 6-8

numerictype Structure of Fixed-Point Objects 6-11
Valid Values for numerictype Structure Properties 6-11
Properties That Affect the Slope . 6-13
Stored Integer Value and Real World Value 6-13

numerictype Objects Usage to Share Data Type and
Scaling Settings of fi objects . 6-14
Example 1 . 6-14
Example 2 . 6-15

Working with quantizer Objects

7
Constructing quantizer Objects . 7-2

quantizer Object Properties . 7-3

Quantizing Data with quantizer Objects 7-4

Transformations for Quantized Data 7-6

ix

Code Acceleration and Code Generation from
MATLAB for Fixed-Point Algorithms

8
Code Acceleration and Code Generation from
MATLAB . 8-3

Requirements for Generating Complied C Code
Files . 8-4

Functions Supported for Code Acceleration or
Generation . 8-5

Fixed-Point Code Acceleration and Generation
Workflow . 8-14

Set Up Compiler to Generate Compiled C Code
Functions . 8-15

Accelerate Code Using fiaccel . 8-16
Speeding Up Fixed-Point Execution with fiaccel 8-16
Running fiaccel . 8-16
Generated Files and Locations . 8-17
Data Type Override Using fiaccel . 8-20

File Infrastructure and Paths Setup 8-21
Compile Path Search Order . 8-21
When to Use the Code Generation Path 8-21
Add Files to the Code Generation Path 8-22
Adding Folders to Search Paths . 8-22
Naming Conventions . 8-22

Detect and Debug Code Generation Errors 8-25
Debugging Strategies . 8-25
Error Detection at Design Time . 8-26
Error Detection at Compile Time . 8-26

Set Up C Code Compilation Options 8-28
C Code Compiler Configuration Object 8-28

x Contents

Compilation Options Modification at the Command Line
Using Dot Notation . 8-28

How fiaccel Resolves Conflicting Options 8-29

MEX Configuration Dialog Box Options 8-30
See Also . 8-35

Specify Primary Function Input Properties 8-36
Why You Must Specify Input Properties 8-36
Properties to Specify . 8-36
Rules for Specifying Properties of Primary Inputs 8-39
Methods for Defining Properties of Primary Inputs 8-40
Input Properties Definition by Example at the Command
Line . 8-40

Best Practices for Accelerating Fixed-Point Code 8-48
Recommended Compilation Options for fiaccel 8-48
Build Scripts . 8-49
Check Code Interactively Using MATLAB Code
Analyzer . 8-50

Separating Your Test Bench from Your Function Code . . . 8-51
Preserving Your Code . 8-51
File Naming Conventions . 8-51

Create and Use Fixed-Point Code Generation
Reports . 8-52
Code Generation Report Creation . 8-52
Code Generation Report Opening . 8-53
Viewing Your MATLAB Code . 8-53
Viewing Variables in the Variables Tab 8-55
See Also . 8-56

Generate C Code from Code Containing Global Data . . 8-57
Workflow Overview . 8-57
Declaring Global Variables . 8-57
Defining Global Data . 8-58
Synchronizing Global Data with MATLAB 8-59
Limitations of Using Global Data . 8-62

Define Input Properties Programmatically in MATLAB
File . 8-63

xi

How to Use assert . 8-63
Rules for Using assert Function . 8-67
Example: Specifying Properties of Primary Fixed-Point
Inputs . 8-68

Example: Specifying Class and Size of Scalar Structure . . 8-69
Example: Specifying Class and Size of Structure Array . . 8-70

Control Run-Time Checks . 8-71
Types of Run-Time Checks . 8-71
When to Disable Run-Time Checks 8-72
How to Disable Run-Time Checks . 8-72

Generation with MATLAB Coder 8-74

Code Generation with MATLAB Function Block 8-75
Composing MATLAB Language Function in Simulink
Model . 8-75

MATLAB Function Block with Data Type Override 8-75
Fixed-Point Data Types with MATLAB Function Block . . . 8-76

Generate Fixed-Point FIR Code Using MATLAB
Function Block . 8-84
Program the MATLAB Function Block 8-84
Prepare the Inputs . 8-85
Create the Model . 8-85
Define the fimath Object Using the Model Explorer 8-87
Run the Simulation . 8-88

Fixed-Point FFT Code Example Parameter Values 8-89

Accelerate Code for Variable-Size Data 8-92
Disable Support for Variable-Size Data 8-92
Control Dynamic Memory Allocation 8-93
Accelerate Code for MATLAB Functions with Variable-Size
Data . 8-94

Accelerate Code for a MATLAB Function That Expands a
Vector in a Loop . 8-96

Propose Fixed-Point Data Types in a MATLAB Coder
Project . 8-103

xii Contents

Apply Fixed-Point Data Types in a MATLAB Coder
Project . 8-113

Code Generation Readiness Tool . 8-119
What Information Does the Code Generation Readiness
Tool Provide? . 8-119

Summary Tab . 8-120
Code Structure Tab . 8-121
See Also . 8-124

Check Code Using the Code Generation Readiness
Tool . 8-125
Run Code Generation Readiness Tool at the Command
Line . 8-125

Run the Code Generation Readiness Tool From the Current
Folder Browser . 8-125

See Also . 8-125

Interoperability with Other Products

9
fi Objects with Simulink . 9-2
Reading Fixed-Point Data from the Workspace 9-2
Writing Fixed-Point Data to the Workspace 9-2
Setting the Value and Data Type of Block Parameters . . . 9-6
Logging Fixed-Point Signals . 9-6
Accessing Fixed-Point Block Data During Simulation 9-6

fi Objects with DSP System Toolbox 9-7
Reading Fixed-Point Signals from the Workspace 9-7
Writing Fixed-Point Signals to the Workspace 9-7
fi Objects with dfilt Objects . 9-11

Ways to Generate Code . 9-12

xiii

Calling Functions for Code Generation

10
Resolution of Function Calls in MATLAB Generated
Code . 10-2
Key Points About Resolving Function Calls 10-4
Compile Path Search Order . 10-4
When to Use the Code Generation Path 10-5

Resolution of Files Types on Code Generation Path . . . 10-6

Compilation Directive %#codegen 10-8

Call Local Functions . 10-9

Call Supported Toolbox Functions 10-10

Call MATLAB Functions . 10-11
Declaring MATLAB Functions as Extrinsic Functions . . . 10-12
Calling MATLAB Functions Using feval 10-16
How MATLAB Resolves Extrinsic Functions During
Simulation . 10-16

Working with mxArrays . 10-17
Restrictions on Extrinsic Functions for Code Generation . . 10-19
Limit on Function Arguments . 10-19

Code Generation for MATLAB Classes

11
MATLAB Classes Definition for Code Generation 11-2
Language Limitations . 11-2
Code Generation Features Not Compatible with Classes . . 11-4
Defining Class Properties for Code Generation 11-5
Calls to Base Class Constructor . 11-6

Classes That Support Code Generation 11-9

xiv Contents

Memory Allocation Requirements 11-10

Generate Code for MATLAB Value Classes 11-11

Generate Code for MATLAB Handle Classes and System
Objects . 11-17

MATLAB Classes in Code Generation Reports 11-20
What Reports Tell You About Classes 11-20
How Classes Appear in Code Generation Reports 11-20
How to Generate a Code Generation Report 11-22

Troubleshooting Issues with MATLAB Classes 11-23
Class class does not have a property with name name . . . 11-23

Defining Data for Code Generation

12
Data Definition for Code Generation 12-2

Code Generation for Complex Data 12-4
Restrictions When Defining Complex Variables 12-4
Expressions Containing Complex Operands Yield Complex
Results . 12-5

Code Generation for Characters . 12-6

Defining Functions for Code Generation

13
Specify Variable Numbers of Arguments 13-2

Supported Index Expressions . 13-3

xv

Apply Operations to a Variable Number of
Arguments . 13-4
When to Force Loop Unrolling . 13-4
Using Variable Numbers of Arguments in a for-Loop 13-5

Implement Wrapper Functions . 13-7
Passing Variable Numbers of Arguments from One
Function to Another . 13-7

Pass Property/Value Pairs . 13-8

Variable Length Argument Lists for Code
Generation . 13-10

Defining MATLAB Variables for C/C++ Code
Generation

14
Variables Definition for Code Generation 14-2

Best Practices for Defining Variables for C/C++ Code
Generation . 14-3
Define Variables By Assignment Before Using Them 14-3
Use Caution When Reassigning Variables 14-6
Use Type Cast Operators in Variable Definitions 14-6
Define Matrices Before Assigning Indexed Variables 14-6

Eliminate Redundant Copies of Variables in Generated
Code . 14-7
When Redundant Copies Occur . 14-7
How to Eliminate Redundant Copies by Defining
Uninitialized Variables . 14-7

Defining Uninitialized Variables . 14-8

Reassignment of Variable Properties 14-9

Define and Initialize Persistent Variables 14-10

xvi Contents

Reuse the Same Variable with Different Properties . . . 14-11
When You Can Reuse the Same Variable with Different
Properties . 14-11

When You Cannot Reuse Variables 14-12
Limitations of Variable Reuse . 14-14

Avoid Overflows in for-Loops . 14-16

Supported Variable Types . 14-18

Design Considerations for C/C++ Code
Generation

15
When to Generate Code from MATLAB Algorithms . . . 15-2
When Not to Generate Code from MATLAB Algorithms . . 15-2

Which Code Generation Feature to Use 15-4

Prerequisites for C/C++ Code Generation from
MATLAB . 15-6

MATLAB Code Design Considerations for Code
Generation . 15-7
See Also . 15-8

Expected Differences in Behavior After Compiling
MATLAB Code . 15-9
Why Are There Differences? . 15-9
Character Size . 15-9
Order of Evaluation in Expressions 15-9
Termination Behavior . 15-10
Size of Variable-Size N-D Arrays . 15-10
Size of Empty Arrays . 15-11
Floating-Point Numerical Results . 15-11
NaN and Infinity Patterns . 15-12
Code Generation Target . 15-12
MATLAB Class Initial Values . 15-12

xvii

Variable-Size Support for Code Generation 15-12

MATLAB Language Features Supported for C/C++ Code
Generation . 15-13
MATLAB Language Features Not Supported for C/C++
Code Generation . 15-14

Code Generation for Enumerated Data

16
Enumerated Data Definition for Code Generation 16-2

Enumerated Types Supported for Code Generation . . . 16-3
Enumerated Type Based on int32 . 16-3
Enumerated Type Based on Simulink.IntEnumType 16-4

When to Use Enumerated Data for Code Generation . . 16-6

Generate Code for Enumerated Data from MATLAB
Algorithms . 16-7
How to Generate Code for Enumerated Data 16-7

Generate Code for Enumerated Data from MATLAB
Function Blocks . 16-9

Define Enumerated Data for Code Generation 16-10
Naming Enumerated Types for Code Generation 16-11

Instantiate Enumerated Types for Code Generation . . 16-12

Operations on Enumerated Data Allowed for Code
Generation . 16-13
Assignment Operator, = . 16-13
Relational Operators, < > <= >= == ~= 16-13
Cast Operation . 16-14
Indexing Operation . 16-14
Control Flow Statements: if, switch, while 16-15

xviii Contents

Include Enumerated Data in Control Flow
Statements . 16-16
if Statement with Enumerated Data Types 16-16
switch Statement with Enumerated Data Types 16-17
while Statement with Enumerated Data Types 16-20

Customize Enumerated Types Based on int32 16-22
About Customizing Enumerated Types 16-22
Specify a Default Enumerated Value 16-24
Specify a Header File . 16-25

Customize Enumerated Types Based on
Simulink.IntEnumType . 16-28

Control Names of Enumerated Type Values in
Generated Code . 16-29

Change and Reload Enumerated Data Types 16-31

Restrictions on Use of Enumerated Data in
for-Loops . 16-32

Toolbox Functions That Support Enumerated Types for
Code Generation . 16-33

Code Generation for Function Handles

17
Function Handles Definition for Code Generation 17-2

Define and Pass Function Handles for Code
Generation . 17-3

Define and Pass Function Handles for Code
Acceleration . 17-5

xix

Function Handle Limitations for Code Generation . . . 17-7

Generating Efficient and Reusable Code

18
Unroll for-Loops . 18-2

Inline Functions . 18-3

Eliminate Redundant Copies of Function Inputs 18-4

Generate Reusable Code . 18-6

Code Generation for MATLAB Structures

19
Structure Definition for Code Generation 19-2

Structure Operations Allowed for Code Generation . . . 19-3

Define Scalar Structures for Code Generation 19-4
Restrictions When Using struct . 19-4
Restrictions When Defining Scalar Structures by
Assignment . 19-4

Adding Fields in Consistent Order on Each Control Flow
Path . 19-4

Restriction on Adding New Fields After First Use 19-5

Define Arrays of Structures for Code Generation 19-7
Ensuring Consistency of Fields . 19-7
Using repmat to Define an Array of Structures with
Consistent Field Properties . 19-7

Defining an Array of Structures Using Concatenation 19-8

xx Contents

Make Structures Persistent . 19-9

Index Substructures and Fields . 19-10

Assign Values to Structures and Fields 19-12

Pass Large Structures as Input Parameters 19-13

Functions Supported for Code Generation

20
Functions Supported for Code Generation —
Alphabetical List . 20-2

Functions Supported for Code Generation —
Categorical List . 20-75
Aerospace Toolbox Functions . 20-76
Arithmetic Operator Functions . 20-76
Bit-Wise Operation Functions . 20-77
Casting Functions . 20-78
Communications System Toolbox Functions 20-78
Complex Number Functions . 20-78
Computer Vision System Toolbox Functions 20-79
Data Type Functions . 20-80
Derivative and Integral Functions . 20-80
Discrete Math Functions . 20-81
Error Handling Functions . 20-81
Exponential Functions . 20-81
Filtering and Convolution Functions 20-82
Fixed-Point Toolbox Functions . 20-82
Histogram Functions . 20-91
Image Processing Toolbox Functions 20-91
Input and Output Functions . 20-92
Interpolation and Computational Geometry 20-92
Linear Algebra . 20-93
Logical Operator Functions . 20-93
MATLAB Compiler Functions . 20-94
Matrix and Array Functions . 20-94
Nonlinear Numerical Methods . 20-98

xxi

Polynomial Functions . 20-98
Relational Operator Functions . 20-98
Rounding and Remainder Functions 20-99
Set Functions . 20-99
Signal Processing Functions in MATLAB 20-100
Signal Processing Toolbox Functions 20-101
Special Values . 20-105
Specialized Math . 20-105
Statistical Functions . 20-106
String Functions . 20-106
Structure Functions . 20-107
Trigonometric Functions . 20-108

Code Generation for Variable-Size Data

21
What Is Variable-Size Data? . 21-2

Variable-Size Data Definition for Code Generation . . . 21-3

Bounded Versus Unbounded Variable-Size Data 21-4

Control Memory Allocation of Variable-Size Data 21-5

Specify Variable-Size Data Without Dynamic Memory
Allocation . 21-6
Fixing Upper Bounds Errors . 21-6
Specifying Upper Bounds for Variable-Size Data 21-6

Variable-Size Data in Code Generation Reports 21-10
What Reports Tell You About Size . 21-10
How Size Appears in Code Generation Reports 21-11
How to Generate a Code Generation Report 21-11

Define Variable-Size Data for Code Generation 21-12
When to Define Variable-Size Data Explicitly 21-12
Using a Matrix Constructor with Nonconstant
Dimensions . 21-13

xxii Contents

Inferring Variable Size from Multiple Assignments 21-13
Defining Variable-Size Data Explicitly Using
coder.varsize . 21-14

C Code Interface for Arrays . 21-19
C Code Interface for Statically Allocated Arrays 21-19
C Code Interface for Dynamically Allocated Arrays 21-20
Utility Functions for Creating emxArray Data
Structures . 21-21

Troubleshooting Issues with Variable-Size Data 21-23
Diagnosing and Fixing Size Mismatch Errors 21-23
Diagnosing and Fixing Errors in Detecting Upper
Bounds . 21-25

Incompatibilities with MATLAB in Variable-Size
Support for Code Generation . 21-27
Incompatibility with MATLAB for Scalar Expansion 21-27
Incompatibility with MATLAB in Determining Size of
Variable-Size N-D Arrays . 21-29

Incompatibility with MATLAB in Determining Size of
Empty Arrays . 21-30

Incompatibility with MATLAB in Vector-Vector
Indexing . 21-31

Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation 21-32

Dynamic Memory Allocation Not Supported for MATLAB
Function Blocks . 21-34

Restrictions on Variable Sizing in Toolbox Functions
Supported for Code Generation 21-35
Common Restrictions . 21-35
Toolbox Functions with Variable Sizing Restrictions 21-36

Primary Functions

22
Primary Function Input Specification 22-2
When to Specify Input Properties . 22-2

xxiii

Why You Must Specify Input Properties 22-2
Properties to Specify . 22-3
Rules for Specifying Properties of Primary Inputs 22-8
Methods for Defining Properties of Primary Inputs 22-8
Define Input Properties by Example at the Command
Line . 22-9

Specify Constant Inputs at the Command Line 22-12
Specify Variable-Size Inputs at the Command Line 22-14

Define Input Properties Programmatically in the
MATLAB File . 22-16
How to Use assert with MATLAB Coder 22-16
Rules for Using assert Function . 22-23
Specifying General Properties of Primary Inputs 22-24
Specifying Properties of Primary Fixed-Point Inputs 22-25
Specifying Class and Size of Scalar Structure 22-25
Specifying Class and Size of Structure Array 22-26

Checking Code is Suitable for Code Generation

23
Check Code Using the MATLAB Code Analyzer 23-2

Fix Errors Detected at Code Generation Time 23-3
See Also . 23-3

System Objects Supported for Code Generation

24
System Objects Supported for Code Generation 24-2
Code Generation for System Objects 24-2
Computer Vision System Toolbox System Objects 24-2
Communications System Toolbox System Objects 24-7
DSP System Toolbox System Objects 24-13

xxiv Contents

System Objects

25
Create System Objects . 25-2
Create a System object . 25-3
Define a New System object . 25-3
Change a System object Property . 25-4
Check if a System object Property Has Changed 25-4
Run a System object . 25-4
Display Available System Objects . 25-5

Set Up System Objects . 25-6
Create a New System object . 25-6
Retrieve System object Property Values 25-6
Set System object Property Values 25-7

Process Data Using System Objects 25-11
What are System object Methods? . 25-11
The Step Method . 25-11
Common Methods . 25-13
Advantages of Using Methods . 25-15

Tuning System object Properties in MATLAB 25-16
Understand System object Modes . 25-16
Change Properties While Running System Objects 25-17
Change System object Input Complexity or Dimensions . . 25-18

Find Help and Examples for System Objects 25-19

Use System Objects in MATLAB Code Generation 25-21
Considerations for Using System Objects in Generated
Code . 25-21

Use System Objects with codegen . 25-26
Use System Objects with the MATLAB Function Block . . . 25-26
Use System Objects with MATLAB Compiler 25-26

Index

xxv

xxvi Contents

1

Fixed-Point Concepts

• “Fixed-Point Data Types” on page 1-2

• “Scaling” on page 1-4

• “Precision and Range” on page 1-5

• “Arithmetic Operations” on page 1-10

• “fi Objects and C Integer Data Types” on page 1-22

1 Fixed-Point Concepts

Fixed-Point Data Types
In digital hardware, numbers are stored in binary words. A binary word is
a fixed-length sequence of bits (1’s and 0’s). How hardware components or
software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are represented as either fixed-point or floating-point data
types. This chapter discusses many terms and concepts relating to fixed-point
numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position
of the binary point, and whether it is signed or unsigned. The position of
the binary point is the means by which fixed-point values are scaled and
interpreted.

For example, a binary representation of a generalized fixed-point number
(either signed or unsigned) is shown below:

��� � ��� � �� ���� �� �� ��

where

• bi is the i
th binary digit.

• wl is the word length in bits.

• bwl-1 is the location of the most significant, or highest, bit (MSB).

• b0 is the location of the least significant, or lowest, bit (LSB).

• The binary point is shown four places to the left of the LSB. In this
example, therefore, the number is said to have four fractional bits, or a
fraction length of four.

Fixed-point data types can be either signed or unsigned. Signed binary
fixed-point numbers are typically represented in one of three ways:

1-2

Fixed-Point Data Types

• Sign/magnitude

• One’s complement

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and is the only representation used by Fixed-Point Toolbox™
documentation. Refer to “Two’s Complement” on page 1-11 for more
information.

1-3

1 Fixed-Point Concepts

Scaling
Fixed-point numbers can be encoded according to the scheme

real-world value slope integer bias

where the slope can be expressed as

slope slope adjustment factor 2fixed exponent

The integer is sometimes called the stored integer. This is the raw binary
number, in which the binary point assumed to be at the far right of the word.
In Fixed-Point Toolbox documentation, the negative of the fixed exponent is
often referred to as the fraction length.

The slope and bias together represent the scaling of the fixed-point number.
In a number with zero bias, only the slope affects the scaling. A fixed-point
number that is only scaled by binary point position is equivalent to a number
in [Slope Bias] representation that has a bias equal to zero and a slope
adjustment factor equal to one. This is referred to as binary point-only scaling
or power-of-two scaling:

real-world value integerfixed exponent 2

or

real-world value integer-fixed exponent 2

Fixed-Point Toolbox software supports both binary point-only scaling and
[Slope Bias] scaling.

Note For examples of binary point-only scaling, see the Fixed-Point Toolbox
Binary-Point Scaling example.

1-4

Precision and Range

Precision and Range

In this section...

“Range” on page 1-5

“Precision” on page 1-6

Note You must pay attention to the precision and range of the fixed-point
data types and scalings you choose in order to know whether rounding
methods will be invoked or if overflows or underflows will occur.

Range
The range is the span of numbers that a fixed-point data type and scaling
can represent. The range of representable numbers for a two’s complement

fixed-point number of word length wl , scaling S and bias B is illustrated
below:

�
��

��������	�
���� ��������	�
����

� ���� � �� � � ���� � �� ��

For both signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 2wl.

For example, in two’s complement, negative numbers must be represented
as well as zero, so the maximum value is 2wl -1 – 1. Because there is only one
representation for zero, there are an unequal number of positive and negative

numbers. This means there is a representation for − −2 1wl but not for 2 1wl− :

�

��������	�
���� ��������	�
����

��	�����	�	�	���	����	�	��

� ��� � ����

1-5

1 Fixed-Point Concepts

Overflow Handling
Because a fixed-point data type represents numbers within a finite range,
overflows and underflows can occur if the result of an operation is larger or
smaller than the numbers in that range.

Fixed-Point Toolbox software allows you to either saturate or wrap overflows.
Saturation represents positive overflows as the largest positive number
in the range being used, and negative overflows as the largest negative
number in the range being used. Wrapping uses modulo arithmetic to cast an
overflow back into the representable range of the data type. Refer to “Modulo
Arithmetic” on page 1-10 for more information.

When you create a fi object, any overflows are saturated. The OverflowMode
property of the default fimath is saturate. You can log overflows and
underflows by setting the LoggingMode property of the fipref object to on.
Refer to “LoggingMode” for more information.

Precision
The precision of a fixed-point number is the difference between successive
values representable by its data type and scaling, which is equal to the value
of its least significant bit. The value of the least significant bit, and therefore
the precision of the number, is determined by the number of fractional bits.
A fixed-point value can be represented to within half of the precision of its
data type and scaling.

For example, a fixed-point representation with four bits to the right of the
binary point has a precision of 2-4 or 0.0625, which is the value of its least
significant bit. Any number within the range of this data type and scaling can
be represented to within (2-4)/2 or 0.03125, which is half the precision. This is
an example of representing a number with finite precision.

Rounding Methods
When you represent numbers with finite precision, not every number in the
available range can be represented exactly. If a number cannot be represented
exactly by the specified data type and scaling, a rounding method is used to
cast the value to a representable number. Although precision is always lost
in the rounding operation, the cost of the operation and the amount of bias
that is introduced depends on the rounding method itself. To provide you with

1-6

Precision and Range

greater flexibility in the trade-off between cost and bias, Fixed-Point Toolbox
software currently supports the following rounding methods:

• ceil rounds to the closest representable number in the direction of positive
infinity.

• convergent rounds to the closest representable number. In the case of
a tie, convergent rounds to the nearest even number. This is the least
biased rounding method provided by the toolbox.

• fix rounds to the closest representable number in the direction of zero.

• floor, which is equivalent to two’s complement truncation, rounds to the
closest representable number in the direction of negative infinity.

• nearest rounds to the closest representable number. In the case of a tie,
nearest rounds to the closest representable number in the direction of
positive infinity. This rounding method is the default for fi object creation
and fi arithmetic.

• round rounds to the closest representable number. In the case of a tie,
the round method rounds:

- Positive numbers to the closest representable number in the direction
of positive infinity.

- Negative numbers to the closest representable number in the direction
of negative infinity.

Choosing a Rounding Method. Each rounding method has a set of
inherent properties. Depending on the requirements of your design, these
properties could make the rounding method more or less desirable to you. By
knowing the requirements of your design and understanding the properties of
each rounding method, you can determine which is the best fit for your needs.
The most important properties to consider are:

• Cost — Independent of the hardware being used, how much processing
expense does the rounding method require?

- Low — The method requires few processing cycles.

- Moderate — The method requires a moderate number of processing
cycles.

- High — The method requires more processing cycles.

1-7

1 Fixed-Point Concepts

Note The cost estimates provided here are hardware independent. Some
processors have rounding modes built-in, so consider carefully the hardware
you are using before calculating the true cost of each rounding mode.

• Bias — What is the expected value of the rounded values minus the original

values: Ε ̂ −() ?
- Ε ̂ −() < 0 — The rounding method introduces a negative bias.

- Ε ̂ −() = 0 — The rounding method is unbiased.

- Ε ̂ −() > 0 — The rounding method introduces a positive bias.

• Possibility of Overflow — Does the rounding method introduce the
possibility of overflow?

- Yes — The rounded values may exceed the minimum or maximum
representable value.

- No — The rounded values will never exceed the minimum or maximum
representable value.

1-8

Precision and Range

The following table shows a comparison of the different rounding methods
available in both Fixed-Point Toolbox and Simulink® Fixed Point™ products.

Fixed-Point Toolbox
Rounding Method

Simulink Fixed
Point Rounding
Mode

Cost Bias Possibility
of Overflow

ceil Ceiling Low Large positive Yes

convergent Convergent High Unbiased Yes

fix Zero Low • Large positive for
negative samples

• Unbiased for
samples with
evenly distributed
positive and
negative values

• Large negative for
positive samples

No

floor Floor Low Large negative No

nearest Nearest Moderate Small positive Yes

round Round High • Small negative for
negative samples

• Unbiased for
samples with
evenly distributed
positive and
negative values

• Small positive for
positive samples

Yes

N/A Simplest
(Simulink Fixed
Point only)

Low Depends on the
operation

No

1-9

1 Fixed-Point Concepts

Arithmetic Operations

In this section...

“Modulo Arithmetic” on page 1-10

“Two’s Complement” on page 1-11

“Addition and Subtraction” on page 1-12

“Multiplication” on page 1-13

“Casts” on page 1-19

Note These sections will help you understand what data type and scaling
choices result in overflows or a loss of precision.

Modulo Arithmetic
Binary math is based on modulo arithmetic. Modulo arithmetic uses only
a finite set of numbers, wrapping the results of any calculations that fall
outside the given set back into the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers
in this system can only be 1 through 12. Therefore, in the “clock” system, 9
plus 9 equals 6. This can be more easily visualized as a number circle:

1-10

Arithmetic Operations

��
�

�

�

�

�
�

�

�

�

��

��
��

�

�

�

�

�
�

�

�

�

��

��

�	 	��
�	�	���	

 	�!
���	�

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic
results that fall outside this range are wrapped “around the circle” to either 0
or 1.

Two’s Complement
Two’s complement is a way to interpret a binary number. In two’s
complement, positive numbers always start with a 0 and negative numbers
always start with a 1. If the leading bit of a two’s complement number is 0,
the value is obtained by calculating the standard binary value of the number.
If the leading bit of a two’s complement number is 1, the value is obtained by
assuming that the leftmost bit is negative, and then calculating the binary
value of the number. For example,

01 0 2 1

11 2 2 2 1 1

0

1 0

= + =

= −() + ()() = − + = −

()

()

To compute the negative of a binary number using two’s complement,

1 Take the one’s complement, or “flip the bits.”

1-11

1 Fixed-Point Concepts

2 Add a 2^(-FL) using binary math, where FL is the fraction length.

3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one’s
complement of the number, or flip the bits:

11010 00101→

Next, add a 1, wrapping all numbers to 0 or 1:

00101
1

00110 6
+

()

Addition and Subtraction
The addition of fixed-point numbers requires that the binary points of the
addends be aligned. The addition is then performed using binary arithmetic
so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010 1
0110 110

011001 010

18 5
6 75
25 25

.

.

.

(.)
(.)
(.)

+

Fixed-point subtraction is equivalent to adding while using the two’s
complement value for any negative values. In subtraction, the addends
must be sign-extended to match each other’s length. For example, consider
subtracting 0110.110 (6.75) from 010010.1 (18.5):

010010 100
0110 110

18 5
6 75

.

.
(.)
(.)−

010010 100
1001 010

1001011 110

18 5
6 75

11 75

.

.

.

(.)
(.)
(.)

+
/

−11

"�#	���
��	���$����

�%�&�	$���������
���	����	�'�������

1-12

Arithmetic Operations

The default fimath has a value of 1 (true) for the CastBeforeSum property.
This casts addends to the sum data type before addition. Therefore, no further
shifting is necessary during the addition to line up the binary points.

If CastBeforeSum has a value of 0 (false), the addends are added with full
precision maintained. After the addition the sum is then quantized.

Multiplication
The multiplication of two’s complement fixed-point numbers is directly
analogous to regular decimal multiplication, with the exception that the
intermediate results must be sign-extended so that their left sides align
before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types
The following diagrams show the data types used for fixed-point multiplication
using Fixed-Point Toolbox software. The diagrams illustrate the differences
between the data types used for real-real, complex-real, and complex-complex
multiplication.

1-13

1 Fixed-Point Concepts

Real-Real Multiplication. The following diagram shows the data types used
by the toolbox in the multiplication of two real numbers. The software returns
the output of this operation in the product data type, which is governed by the
fimath object ProductMode property.

Real-Complex Multiplication. The following diagram shows the data types
used by the toolbox in the multiplication of a real and a complex fixed-point
number. Real-complex and complex-real multiplication are equivalent. The
software returns the output of this operation in the product data type, which
is governed by the fimath object ProductMode property:

Complex-Complex Multiplication. The following diagram shows the
multiplication of two complex fixed-point numbers. Note that the software
returns the output of this operation in the sum data type, which is governed
by the fimath object SumMode property. The intermediate product data type is
determined by the fimath object ProductMode property.

1-14

Arithmetic Operations

When the fimath object CastBeforeSum property is true, the casts to the
sum data type are present after the multipliers in the preceding diagram. In
C code, this is equivalent to

acc=ac;
acc-=bd;

for the subtractor, and

acc=ad;
acc+=bc;

for the adder, where acc is the accumulator. When the CastBeforeSum
property is false, the casts are not present, and the data remains in the
product data type before the subtraction and addition operations.

1-15

1 Fixed-Point Concepts

Multiplication with fimath
In the following examples, let

F = fimath('ProductMode','FullPrecision',...
'SumMode','FullPrecision')
T1 = numerictype('WordLength',24,'FractionLength',20)
T2 = numerictype('WordLength',16,'FractionLength',10)

Real*Real. Notice that the word length and fraction length of the result z
are equal to the sum of the word lengths and fraction lengths, respectively,
of the multiplicands. This is because the fimath SumMode and ProductMode
properties are set to FullPrecision:

P = fipref;
P.FimathDisplay = 'none';
x = fi(5, T1, F)

x =

5

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24

FractionLength: 20

y = fi(10, T2, F)

y =

10

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 10

z = x*y

1-16

Arithmetic Operations

z =

50

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 40

FractionLength: 30

Real*Complex. Notice that the word length and fraction length of the result
z are equal to the sum of the word lengths and fraction lengths, respectively,
of the multiplicands. This is because the fimath SumMode and ProductMode
properties are set to FullPrecision:

x = fi(5,T1,F)

x =

5

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24

FractionLength: 20

y = fi(10+2i,T2,F)

y =

10.0000 + 2.0000i

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 10

1-17

1 Fixed-Point Concepts

z = x*y

z =

50.0000 +10.0000i

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 40

FractionLength: 30

Complex*Complex. Complex-complex multiplication involves an addition
as well as multiplication, so the word length of the full-precision result has
one more bit than the sum of the word lengths of the multiplicands:

x = fi(5+6i,T1,F)

x =

5.0000 + 6.0000i

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24

FractionLength: 20

y = fi(10+2i,T2,F)

y =

10.0000 + 2.0000i

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 10

1-18

Arithmetic Operations

z = x*y

z =

38.0000 +70.0000i

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 41

FractionLength: 30

Casts
The fimath object allows you to specify the data type and scaling of
intermediate sums and products with the SumMode and ProductMode
properties. It is important to keep in mind the ramifications of each cast
when you set the SumMode and ProductMode properties. Depending upon the
data types you select, overflow and/or rounding might occur. The following
two examples demonstrate cases where overflow and rounding can occur.

Note For more examples of casting, see “Cast fi Objects” on page 2-12.

Casting from a Shorter Data Type to a Longer Data Type
Consider the cast of a nonzero number, represented by a 4-bit data type with
two fractional bits, to an 8-bit data type with seven fractional bits:

1-19

1 Fixed-Point Concepts

()��	���	*��	�)�	��
$�	����
�#��	+*����	�**,	�)�)��)	���	%��)
�)�	�)�*�	
� 	-��*��%	���)�	�$$

()�	��
��	%���	���
���	�	%��

()���	����	�*	�)�	�����������
����	�#��	��	������	%��)
�&�	�	�&�

��
$�

�����������

()�	��
$�	����	�
��	��	�)�*���	
�	��	���$)	�)�
����#	�����	��������	�*	�)�	�����������	����	�#��

As the diagram shows, the source bits are shifted up so that the binary point
matches the destination binary point position. The highest source bit does
not fit, so overflow might occur and the result can saturate or wrap. The
empty bits at the low end of the destination data type are padded with either
0’s or 1’s:

• If overflow does not occur, the empty bits are padded with 0’s.

• If wrapping occurs, the empty bits are padded with 0’s.

• If saturation occurs,

- The empty bits of a positive number are padded with 1’s.

- The empty bits of a negative number are padded with 0’s.

You can see that even with a cast from a shorter data type to a longer data
type, overflow can still occur. This can happen when the integer length of
the source data type (in this case two) is longer than the integer length of
the destination data type (in this case one). Similarly, rounding might be
necessary even when casting from a shorter data type to a longer data type, if
the destination data type and scaling has fewer fractional bits than the source.

1-20

Arithmetic Operations

Casting from a Longer Data Type to a Shorter Data Type
Consider the cast of a nonzero number, represented by an 8-bit data type with
seven fractional bits, to a 4-bit data type with two fractional bits:

()��	��	��	���
�	*�	�)��	���
*��	�)�	��
$�.	��	�)�	��
��
�
��	��	����/�'������	��	*���
�)�	�����������	����	�#��

()���	����	*��	�)�	��
$�
��	���	*��	����	�)�	�����������
����	�#�� 	()�	��
��	��	�
����

��
$�

�����������

()�	��
$�	����	�
��	��	�)�*���	��%�	��	���$)	�)�
����#	�����	��������	�*	�)�	�����������	����	�#��

As the diagram shows, the source bits are shifted down so that the binary
point matches the destination binary point position. There is no value for
the highest bit from the source, so sign extension is used to fill the integer
portion of the destination data type. The bottom five bits of the source do not
fit into the fraction length of the destination. Therefore, precision can be
lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter
data type, all the integer bits are maintained. Conversely, full precision can
be maintained even if you cast to a shorter data type, as long as the fraction
length of the destination data type is the same length or longer than the
fraction length of the source data type. In that case, however, bits are lost
from the high end of the result and overflow can occur.

The worst case occurs when both the integer length and the fraction length of
the destination data type are shorter than those of the source data type and
scaling. In that case, both overflow and a loss of precision can occur.

1-21

1 Fixed-Point Concepts

fi Objects and C Integer Data Types

In this section...

“Integer Data Types” on page 1-22

“Unary Conversions” on page 1-24

“Binary Conversions” on page 1-25

“Overflow Handling” on page 1-28

Note The sections in this topic compare the fi object with fixed-point data
types and operations in C. In these sections, the information on ANSI C is
adapted from Samuel P. Harbison and Guy L. Steele Jr., C: A Reference
Manual, 3rd ed., Prentice Hall, 1991.

Integer Data Types
This section compares the numerical range of fi integer data types to the
minimum numerical range of C integer data types, assuming a “Two’s
Complement” on page 1-11 represenation.

C Integer Data Types
Many C compilers support a two’s complement representation of signed
integer data types. The following table shows the minimum ranges of C
integer data types using a two’s complement representation. The integer
ranges can be larger than or equal to those shown, but cannot be smaller. The
range of a long must be larger than or equal to the range of an int, which
must be larger than or equal to the range of a short.

In the two’s complement representation, a signed integer with n bits has a

range from − −2 1n to 2 11n− − , inclusive. An unsigned integer with n bits has

a range from 0 to 2 1n − , inclusive. The negative side of the range has one
more value than the positive side, and zero is represented uniquely.

1-22

fi Objects and C Integer Data Types

Integer Type Minimum Maximum

signed char –128 127

unsigned char 0 255

short int –32,768 32,767

unsigned short 0 65,535

int –32,768 32,767

unsigned int 0 65,535

long int –2,147,483,648 2,147,483,647

unsigned long 0 4,294,967,295

fi Integer Data Types
The following table lists the numerical ranges of the integer data types
of the fi object, in particular those equivalent to the C integer data
types. The ranges are large enough to accommodate the two’s complement
representation, which is the only signed binary encoding technique supported
by Fixed-Point Toolbox software.

Constructor Signed Word
Length

Fraction
Length Minimum Maximum Closest ANSI

C Equivalent

fi(x,1,n,0) Yes
n
(2 to
65,535)

0 − −2 1n 2 11n− − N/A

fi(x,0,n,0) No
n
(2 to
65,535)

0 0 2 1n − N/A

fi(x,1,8,0) Yes 8 0 –128 127 signed char

fi(x,0,8,0) No 8 0 0 255 unsigned char

fi(x,1,16,0) Yes 16 0 –32,768 32,767 short int

fi(x,0,16,0) No 16 0 0 65,535
unsigned
short

1-23

1 Fixed-Point Concepts

Constructor Signed Word
Length

Fraction
Length Minimum Maximum Closest ANSI

C Equivalent

fi(x,1,32,0) Yes 32 0 –2,147,483,648 2,147,483,647 long int

fi(x,0,32,0) No 32 0 0 4,294,967,295 unsigned long

Unary Conversions
Unary conversions dictate whether and how a single operand is converted
before an operation is performed. This section discusses unary conversions
in ANSI C and of fi objects.

ANSI C Usual Unary Conversions
Unary conversions in ANSI C are automatically applied to the operands of
the unary !, –, ~, and * operators, and of the binary << and >> operators,
according to the following table:

Original Operand Type ANSI C Conversion

char or short int

unsigned char or unsigned short int or unsigned int1

float float

Array of T Pointer to T

Function returning T Pointer to function returning T

1If type int cannot represent all the values of the original data type without
overflow, the converted type is unsigned int.

1-24

fi Objects and C Integer Data Types

fi Usual Unary Conversions
The following table shows the fi unary conversions:

C Operator fi Equivalent fi Conversion

!x ~x = not(x) Result is logical.

~x bitcmp(x) Result is same numeric type as operand.

*x No equivalent N/A

x<<n bitshift(x,n)
positive n

Result is same numeric type as operand. Round mode
is always floor. Overflow mode is obeyed. 0-valued
bits are shifted in on the right.

x>>n bitshift(x,-n) Result is same numeric type as operand. Round mode
is always floor. Overflow mode is obeyed. 0-valued
bits are shifted in on the left if the operand is unsigned
or signed and positive. 1-valued bits are shifted in on
the left if the operand is signed and negative.

+x +x Result is same numeric type as operand.

-x -x Result is same numeric type as operand. Overflow
mode is obeyed. For example, overflow might occur
when you negate an unsigned fi or the most negative
value of a signed fi.

Binary Conversions
This section describes the conversions that occur when the operands of a
binary operator are different data types.

ANSI C Usual Binary Conversions
In ANSI C, operands of a binary operator must be of the same type. If they
are different, one is converted to the type of the other according to the first
applicable conversion in the following table:

1-25

1 Fixed-Point Concepts

Type of One Operand
Type of Other
Operand ANSI C Conversion

long double Any long double

double Any double

float Any float

unsigned long Any unsigned long

long unsigned long or unsigned
long1

long int long

unsigned int or unsigned unsigned

int int int

1Type long is only used if it can represent all values of type unsigned.

fi Usual Binary Conversions
When one of the operands of a binary operator (+, –, *, .*) is a fi object and
the other is a MATLAB built-in numeric type, then the non-fi operand is
converted to a fi object before the operation is performed, according to the
following table:

Type of One
Operand

Type of Other
Operand

Properties of Other Operand After Conversion to a fi
Object

fi double or
single • Signed = same as the original fi operand

• WordLength = same as the original fi operand

• FractionLength = set to best precision possible

fi int8
• Signed = 1

• WordLength = 8

• FractionLength = 0

1-26

fi Objects and C Integer Data Types

Type of One
Operand

Type of Other
Operand

Properties of Other Operand After Conversion to a fi
Object

fi uint8
• Signed = 0

• WordLength = 8

• FractionLength = 0

fi int16
• Signed = 1

• WordLength = 16

• FractionLength = 0

fi uint16
• Signed = 0

• WordLength = 16

• FractionLength = 0

fi int32
• Signed = 1

• WordLength = 32

• FractionLength = 0

fi uint32
• Signed = 0

• WordLength = 32

• FractionLength = 0

fi int64 • Signed = 1

• WordLength = 64

• FractionLength = 0

fi uint64 • Signed = 0

• WordLength = 64

• FractionLength = 0

1-27

1 Fixed-Point Concepts

Overflow Handling
The following sections compare how ANSI C and Fixed-Point Toolbox software
handle overflows.

ANSI C Overflow Handling
In ANSI C, the result of signed integer operations is whatever value is
produced by the machine instruction used to implement the operation.
Therefore, ANSI C has no rules for handling signed integer overflow.

The results of unsigned integer overflows wrap in ANSI C.

fi Overflow Handling
Addition and multiplication with fi objects yield results that can be exactly
represented by a fi object, up to word lengths of 65,535 bits or the available
memory on your machine. This is not true of division, however, because many
ratios result in infinite binary expressions. You can perform division with fi
objects using the divide function, which requires you to explicitly specify the
numeric type of the result.

The conditions under which a fi object overflows and the results then
produced are determined by the associated fimath object. You can specify
certain overflow characteristics separately for sums (including differences)
and products. Refer to the following table:

fimath Object Properties
Related to Overflow
Handling Property Value Description

'saturate' Overflows are saturated to the maximum
or minimum value in the range.

OverflowMode

'wrap' Overflows wrap using modulo arithmetic if
unsigned, two’s complement wrap if signed.

1-28

fi Objects and C Integer Data Types

fimath Object Properties
Related to Overflow
Handling Property Value Description

ProductMode 'FullPrecision' Full-precision results are kept. Overflow
does not occur. An error is thrown if the
resulting word length is greater than
MaxProductWordLength.

The rules for computing the resulting
product word and fraction lengths are
given in “ProductMode” in the Property
Reference.

'KeepLSB' The least significant bits of the product are
kept. Full precision is kept, but overflow
is possible. This behavior models the C
language integer operations.

The resulting word length is determined
by the ProductWordLength property. If
ProductWordLength is greater than is
necessary for the full-precision product,
then the result is stored in the least
significant bits. If ProductWordLength is
less than is necessary for the full-precision
product, then overflow occurs.

The rule for computing the resulting
product fraction length is given in
“ProductMode” in the Property Reference.

1-29

1 Fixed-Point Concepts

fimath Object Properties
Related to Overflow
Handling Property Value Description

'KeepMSB' The most significant bits of the product are
kept. Overflow is prevented, but precision
may be lost.

The resulting word length is determined
by the ProductWordLength property. If
ProductWordLength is greater than is
necessary for the full-precision product,
then the result is stored in the most
significant bits. If ProductWordLength is
less than is necessary for the full-precision
product, then rounding occurs.

The rule for computing the resulting
product fraction length is given in
“ProductMode” in the Property Reference.

'SpecifyPrecision' You can specify both the word length and
the fraction length of the resulting product.

ProductWordLength Positive integer The word length of product results when
ProductMode is 'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

MaxProductWordLength Positive integer The maximum product word length allowed
when ProductMode is 'FullPrecision'.
The default is 65,535 bits. This property
can help ensure that your simulation does
not exceed your hardware requirements.

ProductFractionLength Integer The fraction length of product results when
ProductMode is 'Specify Precision'.

1-30

fi Objects and C Integer Data Types

fimath Object Properties
Related to Overflow
Handling Property Value Description

SumMode 'FullPrecision' Full-precision results are kept. Overflow
does not occur. An error is thrown if the
resulting word length is greater than
MaxSumWordLength.

The rules for computing the resulting sum
word and fraction lengths are given in
“SumMode” in the Property Reference.

'KeepLSB' The least significant bits of the sum are
kept. Full precision is kept, but overflow
is possible. This behavior models the C
language integer operations.

The resulting word length is determined
by the SumWordLength property. If
SumWordLength is greater than is necessary
for the full-precision sum, then the result
is stored in the least significant bits. If
SumWordLength is less than is necessary
for the full-precision sum, then overflow
occurs.

The rule for computing the resulting sum
fraction length is given in “SumMode” in
the Property Reference.

'KeepMSB' The most significant bits of the sum are
kept. Overflow is prevented, but precision
may be lost.

The resulting word length is determined
by the SumWordLength property. If
SumWordLength is greater than is necessary
for the full-precision sum, then the result
is stored in the most significant bits. If
SumWordLength is less than is necessary
for the full-precision sum, then rounding
occurs.

1-31

1 Fixed-Point Concepts

fimath Object Properties
Related to Overflow
Handling Property Value Description

The rule for computing the resulting sum
fraction length is given in “SumMode” in
the Property Reference.

'SpecifyPrecision' You can specify both the word length and
the fraction length of the resulting sum.

SumWordLength Positive integer The word length of sum results when
SumMode is 'KeepLSB', 'KeepMSB', or
'SpecifyPrecision'.

MaxSumWordLength Positive integer The maximum sum word length allowed
when SumMode is 'FullPrecision'. The
default is 65,535 bits. This property can
help ensure that your simulation does not
exceed your hardware requirements.

SumFractionLength Integer The fraction length of sum results when
SumMode is 'SpecifyPrecision'.

1-32

2

Working with fi Objects

• “Ways to Construct fi Objects” on page 2-2

• “Cast fi Objects” on page 2-12

• “fi Object Properties” on page 2-17

• “fi Object Functions” on page 2-23

2 Working with fi Objects

Ways to Construct fi Objects

In this section...

“Types of fi Constructors” on page 2-2

“Examples of Constructing fi Objects” on page 2-3

Types of fi Constructors
You can create fi objects using Fixed-Point Toolbox software in any of the
following ways:

• You can use the fi constructor function to create a new fi object.

• You can use the sfi constructor function to create a new signed fi object.

• You can use the ufi constructor function to create a new unsigned fi object.

• You can use any of the fi constructor functions to copy an existing fi object.

To get started, type

a = fi(0)

to create a fi object with the default data type and a value of 0.

a =

0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

This constructor syntax creates a signed fi object with a value of 0, word
length of 16 bits, and fraction length of 15 bits. Because you did not specify
any fimath object properties in the fi constructor, the resulting fi object
a has no local fimath.

2-2

Ways to Construct fi Objects

To see all of the fi, sfi, and ufi constructor syntaxes, refer to the respective
reference pages.

Note For information on the display format of fi objects, refer to “View
Fixed-Point Data”.

Examples of Constructing fi Objects
The following examples show you several different ways to construct fi
objects. For other, more basic examples of constructing fi objects, see the
Examples section of the following constructor function reference pages:

• fi

• sfi

• ufi

Note The fi constructor creates the fi object using a RoundingMethod of
Nearest and an OverflowAction of Saturate. If you construct a fi from
floating-point values, the default RoundingMethod and OverflowAction
property settings are not used.

Constructing a fi Object with Property Name/Property Value
Pairs
You can use property name/property value pairs to set fi and fimath object
properties when you create the fi object:

a = fi(pi, 'RoundingMEthod','Floor', 'OverflowAction','Wrap')

a =

3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

2-3

2 Working with fi Objects

FractionLength: 13

RoundingMethod: floor
OverflowAction: wrap

ProductMode: FullPrecision
SumMode: FullPrecision

You do not have to specify every fimath object property in the fi constructor.
The fi object uses default values for all unspecified fimath object properties.

• If you specify at least one fimath object property in the fi constructor, the
fi object will have a local fimath object. The fi object uses default values
for the remaining unspecified fimath object properties.

• If you do not specify any fimath object properties in the fi object
constructor, the fi object uses default fimath values.

Constructing a fi Object Using a numerictype Object
You can use a numerictype object to define a fi object:

T = numerictype

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

a = fi(pi, T)

a =

1.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

2-4

Ways to Construct fi Objects

FractionLength: 15

You can also use a fimath object with a numerictype object to define a fi
object:

F = fimath('RoundingMethod', 'Nearest',...
'OverflowAction', 'Saturate',...
'ProductMode','FullPrecision',...
'SumMode','FullPrecision')

F =

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: FullPrecision

a = fi(pi, T, F)

a =

1.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: FullPrecision

Note The syntax a = fi(pi,T,F) is equivalent to a = fi(pi,F,T). You
can use both statements to define a fi object using a fimath object and a
numerictype object.

2-5

2 Working with fi Objects

Constructing a fi Object Using a fimath Object
You can create a fi object using a specific fimath object. When you do so, a
local fimath object is assigned to the fi object you create. If you do not specify
any numerictype object properties, the word length of the fi object defaults
to 16 bits. The fraction length is determined by best precision scaling:

F = fimath('RoundingMethod', 'Nearest',...
'OverflowAction', 'Saturate',...
'ProductMode','FullPrecision',...
'SumMode','FullPrecision',...)

F =

RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision

SumMode: FullPrecision

F.OverflowAction = 'Wrap'

F =

RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: FullPrecision

SumMode: FullPrecision

a = fi(pi, F)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

2-6

Ways to Construct fi Objects

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

You can also create fi objects using a fimath object while specifying various
numerictype properties at creation time:

b = fi(pi, 0, F)

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16

FractionLength: 14

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

c = fi(pi, 0, 8, F)

c =

3.1406

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8

FractionLength: 6

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

2-7

2 Working with fi Objects

d = fi(pi, 0, 8, 6, F)

d =

3.1406

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8

FractionLength: 6

RoundingMethod: Nearest
OverflowAction: wrap

ProductMode: FullPrecision
SumMode: FullPrecision

Building fi Object Constructors in a GUI
When you are working with files in MATLAB®, you can build your fi object
constructors using the Insert fi Constructor dialog box. After specifying
the value and properties of the fi object in the dialog box, you can insert the
prepopulated fi object constructor string at a specific location in your file.

For example, to create a signed fi object with a value of pi, a word length of
16 bits and a fraction length of 13 bits, perform the following steps:

1 On the Home tab, in the File section, click New > Script to open the
MATLAB Editor

2 On the Editor tab, in the Edit section, click in the Insert button
group. Click the Insert fi... to open the Insert fi Constructor dialog box.

3 Use the edit boxes and drop-down menus to specify the following properties
of the fi object:

• Value = pi

• Data type mode = Fixed-point: binary point scaling

• Signedness = Signed

2-8

Ways to Construct fi Objects

• Word length = 16

• Fraction length = 13

4 To insert the fi object constructor string in your file, place your cursor at
the desired location in the file, and click OK on the Insert fi Constructor
dialog box. Clicking OK closes the Insert fi Constructor dialog box and
automatically populates the fi object constructor string in your file:

Determining Property Precedence
The value of a property is taken from the last time it is set. For example,
create a numerictype object with a value of true for the Signed property
and a fraction length of 14:

T = numerictype('Signed', true, 'FractionLength', 14)

T =

DataTypeMode: Fixed-point: binary point scaling

2-9

2 Working with fi Objects

Signedness: Signed
WordLength: 16

FractionLength: 14

Now, create the following fi object in which you specify the numerictype
property after the Signed property, so that the resulting fi object is signed:

a = fi(pi,'Signed',false,'numerictype',T)

a =

1.9999

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 14

Contrast the fi object in this code sample with the fi object in the following
code sample. The numerictype property in the following code sample is
specified before the Signed property, so the resulting fi object is unsigned:

b = fi(pi,'numerictype',T,'Signed',false)

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16

FractionLength: 14

Copying a fi Object
To copy a fi object, simply use assignment, as in the following example:

a = fi(pi)

2-10

Ways to Construct fi Objects

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13
b = a

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

2-11

2 Working with fi Objects

Cast fi Objects

In this section...

“Overwriting by Assignment” on page 2-12

“Ways to Cast with MATLAB Software” on page 2-12

Overwriting by Assignment
Because MATLAB software does not have type declarations, an assignment
like A = B replaces the type and content of A with the type and content of B. If
A does not exist at the time of the assignment, MATLAB creates the variable
A and assigns it the same type and value as B. Such assignment happens
with all types in MATLAB—objects and built-in types alike—including fi,
double, single, int8, uint8, int16, etc.

For example, the following code overwrites the value and int8 type of A with
the value and int16 type of B:

A = int8(0);
B = int16(32767);
A = B

A =

32767

class(A)

ans =

int16

Ways to Cast with MATLAB Software
You may find it useful to cast data into another type—for example, when you
are casting data from an accumulator to memory. There are several ways
to cast data in MATLAB. The following sections provide examples of three
different methods:

2-12

Cast fi Objects

• Casting by Subscripted Assignment

• Casting by Conversion Function

• Casting with the Fixed-Point Toolbox reinterpretcast Function

Casting by Subscripted Assignment
The following subscripted assignment statement retains the type of A and
saturates the value of B to an int8:

A = int8(0);
B = int16(32767);
A(:) = B

A =

127

class(A)

ans =

int8

The same is true for fi objects:

fipref('NumericTypeDisplay', 'short');
A = fi(0, true, 8, 0);
B = fi(32767, true, 16, 0);
A(:) = B

A =

127
s8,0

Note For more information on subscripted assignments, see the subsasgn
function.

2-13

2 Working with fi Objects

Casting by Conversion Function
You can convert from one data type to another by using a conversion function.
In this example, A does not have to be predefined because it is overwritten.

B = int16(32767);
A = int8(B)

A =

127

class(A)

ans =

int8

The same is true for fi objects:

B = fi(32767, true, 16, 0)
A = fi(B, 1, 8, 0)

B =

32767
s16,0

A =

127
s8,0

Using a numerictype Object in the fi Conversion Function. Often a
specific numerictype is used in many places, and it is convenient to predefine
numerictype objects for use in the conversion functions. Predefining these
objects is a good practice because it also puts the data type specification in
one place.

T8 = numerictype(1,8,0)

T8 =

2-14

Cast fi Objects

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 0

T16 = numerictype(1,16,0)

T16 =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 0

B = fi(32767,T16)

B =

32767
s16,0

A = fi(B, T8)

A =

127
s8,0

Casting with the reinterpretcast Function
You can convert fixed-point and built-in data types without changing the
underlying data. The Fixed-Point Toolbox reinterpretcast function
performs this type of conversion.

In the following example, B is an unsigned fi object with a word length of 8
bits and a fraction length of 5 bits. The reinterpretcast function converts B
into a signed fi object A with a word length of 8 bits and a fraction length of 1

2-15

2 Working with fi Objects

bit. The real-world values of A and B differ, but their binary representations
are the same.

B = fi([pi/4 1 pi/2 4], false, 8, 5)
T = numerictype(true, 8, 1);
A = reinterpretcast(B, T)

B =

0.7813 1.0000 1.5625 4.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 8

FractionLength: 5

A =

12.5000 16.0000 25.0000 -64.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 1

To verify that the underlying data has not changed, compare the binary
representations of A and B:

binary_B = bin(B)
binary_A = bin(A)

binary_A =

00011001 00100000 00110010 10000000

binary_B =

00011001 00100000 00110010 10000000

2-16

fi Object Properties

fi Object Properties

In this section...

“Data Properties” on page 2-17

“fimath Properties” on page 2-17

“numerictype Properties” on page 2-19

“Setting fi Object Properties” on page 2-20

Data Properties
The data properties of a fi object are always writable.

• bin — Stored integer value of a fi object in binary

• data — Numerical real-world value of a fi object

• dec — Stored integer value of a fi object in decimal

• double — Real-world value of a fi object, stored as a MATLAB double
data type

• hex— Stored integer value of a fi object in hexadecimal

• oct — Stored integer value of a fi object in octal

To learn more about these properties, see “fi Object Properties” in the
Fixed-Point Toolbox Reference.

fimath Properties
In general, the fimath properties associated with fi objects depend on how
you create the fi object:

• When you specify one or more fimath object properties in the fi
constructor, the resulting fi object has a local fimath object.

• When you do not specify any fimath object properties in the fi constructor,
the resulting fi object has no local fimath.

2-17

2 Working with fi Objects

To determine whether a fi object has a local fimath object, use the
isfimathlocal function.

The fimath properties associated with fi objects determine how fixed-point
arithmetic is performed. These fimath properties can come from a local
fimath object or from default fimath property values. To learn more about
fimath objects in fixed-point arithmetic, see “fimath Rules for Fixed-Point
Arithmetic” on page 4-11.

The following fimath properties are, by transitivity, also properties of the fi
object. You can set these properties for individual fi objects. The following
fimath properties are always writable.

• CastBeforeSum— Whether both operands are cast to the sum data type
before addition

Note This property is hidden when the SumMode is set to FullPrecision.

• MaxProductWordLength—Maximum allowable word length for the product
data type

• MaxSumWordLength — Maximum allowable word length for the sum data
type

• OverflowAction — Action to take on overflow

• ProductBias — Bias of the product data type

• ProductFixedExponent— Fixed exponent of the product data type

• ProductFractionLength — Fraction length, in bits, of the product data
type

• ProductMode— Defines how the product data type is determined

• ProductSlope — Slope of the product data type

• ProductSlopeAdjustmentFactor— Slope adjustment factor of the product
data type

• ProductWordLength—Word length, in bits, of the product data type

• RoundingMethod — Rounding method

2-18

fi Object Properties

• SumBias — Bias of the sum data type

• SumFixedExponent— Fixed exponent of the sum data type

• SumFractionLength— Fraction length, in bits, of the sum data type

• SumMode— Defines how the sum data type is determined

• SumSlope — Slope of the sum data type

• SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data
type

• SumWordLength— The word length, in bits, of the sum data type

To learn more about these properties, see the “fimath Object Properties” in
the Fixed-Point Toolbox Reference.

numerictype Properties
When you create a fi object, a numerictype object is also automatically
created as a property of the fi object:

numerictype— Object containing all the data type information of a fi object,
Simulink signal or model parameter

The following numerictype properties are, by transitivity, also properties of a
fi object. The following properties of the numerictype object become read
only after you create the fi object. However, you can create a copy of a fi
object with new values specified for the numerictype properties:

• Bias — Bias of a fi object

• DataType— Data type category associated with a fi object

• DataTypeMode— Data type and scaling mode of a fi object

• FixedExponent— Fixed-point exponent associated with a fi object

• FractionLength — Fraction length of the stored integer value of a fi
object in bits

• Scaling — Fixed-point scaling mode of a fi object

• Signed— Whether a fi object is signed or unsigned

2-19

2 Working with fi Objects

• Signedness— Whether a fi object is signed or unsigned

Note numerictype objects can have a Signedness of Auto, but all fi
objects must be Signed or Unsigned. If a numerictype object with Auto
Signedness is used to create a fi object, the Signedness property of the fi
object automatically defaults to Signed.

• Slope — Slope associated with a fi object

• SlopeAdjustmentFactor— Slope adjustment associated with a fi object

• WordLength—Word length of the stored integer value of a fi object in bits

For further details on these properties, see the “fi Object Properties” on page
2-17.

There are two ways to specify properties for fi objects in Fixed-Point Toolbox
software. Refer to the following sections:

• “Setting Fixed-Point Properties at Object Creation” on page 2-20

• “Using Direct Property Referencing with fi” on page 2-21

Setting fi Object Properties
You can set fi object properties in two ways:

• Setting the properties when you create the object

• Using direct property referencing

Setting Fixed-Point Properties at Object Creation
You can set properties of fi objects at the time of object creation by including
properties after the arguments of the fi constructor function. For example, to
set the overflow action to Wrap and the rounding method to Convergent,

a = fi(pi, 'OverflowAction', 'Wrap',...
'RoundingMethod', 'Convergent')

a =

2-20

fi Object Properties

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundingMethod: Convergent
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

Using Direct Property Referencing with fi
You can reference directly into a property for setting or retrieving fi object
property values using MATLAB structure-like referencing. You do so by using
a period to index into a property by name.

For example, to get the WordLength of a,

a.WordLength

ans =

16

To set the OverflowMode of a,

a.OverflowAction = 'Wrap'

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

2-21

2 Working with fi Objects

FractionLength: 13

RoundingMethod: Convergent
OverflowAction: wrap

ProductMode: FullPrecision
SumMode: FullPrecision

If you have a fi object b with a local fimath object, you can remove the local
fimath object and force b to use default fimath values:

b = fi(pi, 1, 'RoundingMethod', 'Floor')

b =
3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundingMethod: Floor
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: FullPrecision

b.fimath = []

b =
3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

isfimathlocal(b)

ans =
0

2-22

fi Object Functions

fi Object Functions
In addition to functions that operate on fi objects, you can use the following
functions to access data in a fi object using dot notation.

• bin

• data

• dec

• double

• hex

• storedInteger

• storedIntegerToDouble

• oct

For example,

a = fi(pi);
n = storedInteger(a)

n =

25736

h = hex(a)

h =

6488

a.hex

ans =

6488

2-23

2 Working with fi Objects

2-24

3

Fixed-Point Topics

• “Set Up Fixed-Point Objects” on page 3-2

• “View Fixed-Point Number Circles” on page 3-18

• “Perform Binary-Point Scaling” on page 3-31

• “Develop Fixed-Point Algorithms” on page 3-37

• “Calculate Fixed-Point Sine and Cosine” on page 3-48

• “Calculate Fixed-Point Arctangent” on page 3-70

• “Compute Sine and Cosine Using CORDIC Rotation Kernel” on page 3-96

• “Perform QR Factorization Using CORDIC” on page 3-102

• “Compute Square Root Using CORDIC Hyperbolic Kernel” on page 3-142

• “Convert Cartesian to Polar Using CORDIC Vectoring Kernel” on page
3-148

• “Set Data Types Using Min/Max Instrumentation” on page 3-154

• “Convert Fast Fourier Transform (FFT) to Fixed Point” on page 3-168

• “Detect Limit Cycles in Fixed-Point State-Space Systems” on page 3-179

• “Compute Quantization Error” on page 3-191

• “Normalize Data for Lookup Tables” on page 3-199

• “Implement Fixed-Point Log2 Using Lookup Table” on page 3-205

• “Implement Fixed-Point Square Root Using Lookup Table” on page 3-210

• “Set Fixed-Point Math Attributes” on page 3-215

3 Fixed-Point Topics

Set Up Fixed-Point Objects

Create Fixed-Point Data
This example shows the basics of how to use the fixed-point numeric object fi.

Notation

The fixed-point numeric object is called fi because J.H. Wilkinson used fi
to denote fixed-point computations in his classic texts Rounding Errors in
Algebraic Processes (1963), and The Algebraic Eigenvalue Problem (1965).

Setup

This example may use display settings or preferences that are different from
what you are currently using. To ensure that your current display settings
and preferences are not changed by running this example, the example
automatically saves and restores them. The following code captures the
current states for any display settings or properties that the example changes.

format loose
format long g
% Capture the current state of and reset the fi display and logging
% preferences to the factory settings.
fiprefAtStartOfThisExample = get(fipref);
reset(fipref);

Default Fixed-Point Attributes

To assign a fixed-point data type to a number or variable with the default
fixed-point parameters, use the fi constructor. The resulting fixed-point
value is called a fi object.

For example, the following creates fi objects a and b with attributes shown in
the display, all of which we can specify when the variables are constructed.
Note that when the FractionLength property is not specified, it is set
automatically to "best precision" for the given word length, keeping the
most-significant bits of the value. When the WordLength property is not
specified it defaults to 16 bits.

3-2

Set Up Fixed-Point Objects

a = fi(pi)

a =

3.1416015625

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

b = fi(0.1)

b =

0.0999984741210938

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 18

Specifying Signed and WordLength Properties

The second and third numeric arguments specify Signed (true or 1 = signed,
false or 0 = unsigned), and WordLength in bits, respectively.

% Signed 8-bit
a = fi(pi, 1, 8)

a =

3.15625

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

3-3

3 Fixed-Point Topics

FractionLength: 5

The sfi constructor may also be used to construct a signed fi object

a1 = sfi(pi,8)

a1 =

3.15625

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 5

% Unsigned 20-bit
b = fi(exp(1), 0, 20)

b =

2.71828079223633

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 20

FractionLength: 18

The ufi constructor may be used to construct an unsigned fi object

b1 = ufi(exp(1), 20)

b1 =

2.71828079223633

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned

3-4

Set Up Fixed-Point Objects

WordLength: 20
FractionLength: 18

Precision

The data is stored internally with as much precision as is specified. However,
it is important to be aware that initializing high precision fixed-point variables
with double-precision floating-point variables may not give you the resolution
that you might expect at first glance. For example, let’s initialize an unsigned
100-bit fixed-point variable with 0.1, and then examine its binary expansion:

a = ufi(0.1, 100);

bin(a)

ans =

110011001100110011001100110011001100110011001100110100000000000000000000000

Note that the infinite repeating binary expansion of 0.1 gets cut off at the 52nd
bit (in fact, the 53rd bit is significant and it is rounded up into the 52nd bit).
This is because double-precision floating-point variables (the default MATLAB
data type), are stored in 64-bit floating-point format, with 1 bit for the sign, 11
bits for the exponent, and 52 bits for the mantissa plus one "hidden" bit for an
effective 53 bits of precision. Even though double-precision floating-point has
a very large range, its precision is limited to 53 bits. For more information
on floating-point arithmetic, refer to Chapter 1 of Cleve Moler’s book,
Numerical Computing with MATLAB. The pdf version can be found here:
http://www.mathworks.com/company/aboutus/founders/clevemoler.html

So, why have more precision than floating-point? Because most fixed-point
processors have data stored in a smaller precision, and then compute with
larger precisions. For example, let’s initialize a 40-bit unsigned fi and
multiply using full-precision for products.

Note that the full-precision product of 40-bit operands is 80 bits, which is
greater precision than standard double-precision floating-point.

3-5

http://www.mathworks.com/company/aboutus/founders/clevemoler.html

3 Fixed-Point Topics

a = fi(0.1, 0, 40);
bin(a)

ans =

1100110011001100110011001100110011001101

b = a*a

b =

0.0100000000000045

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 80

FractionLength: 86

bin(b)

ans =

101000111101011100001010001111010111000011110101110000101000111101011100001

Access to Data

The data can be accessed in a number of ways which map to built-in data
types and binary strings. For example,

DOUBLE(A)

a = fi(pi);
double(a)

3-6

Set Up Fixed-Point Objects

ans =

3.1416015625

returns the double-precision floating-point "real-world" value of a, quantized
to the precision of a.

A.DOUBLE = ...

We can also set the real-world value in a double.

a.double = exp(1)

a =

2.71826171875

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

sets the real-world value of a to e, quantized to a’s numeric type.

STOREDINTEGER(A)

storedInteger(a)

ans =

22268

returns the "stored integer" in the smallest built-in integer type available,
up to 64 bits.

Relationship Between Stored Integer Value and Real-World Value

3-7

3 Fixed-Point Topics

In BinaryPoint scaling, the relationship between the stored integer value
and the real-world value is

There is also SlopeBias scaling, which has the relationship

where

and

The math operators of fi work with BinaryPoint scaling and real-valued
SlopeBias scaled fi objects.

BIN(A), OCT(A), DEC(A), HEX(A)

return the stored integer in binary, octal, unsigned decimal, and hexadecimal
strings, respectively.

bin(a)

ans =

0101011011111100

oct(a)

ans =

053374

3-8

Set Up Fixed-Point Objects

dec(a)

ans =

22268

hex(a)

ans =

56fc

A.BIN = ..., A.OCT = ..., A.DEC = ..., A.HEX = ...

set the stored integer from binary, octal, unsigned decimal, and hexadecimal
strings, respectively.

a.bin = '0110010010001000'

a =

3.1416015625

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

a.oct = '031707'

3-9

3 Fixed-Point Topics

a =

1.6180419921875

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

a.dec = '22268'

a =

2.71826171875

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

a.hex = '0333'

a =

0.0999755859375

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

Specifying FractionLength

3-10

Set Up Fixed-Point Objects

When the FractionLength property is not specified, it is computed to be the
best precision for the magnitude of the value and given word length. You may
also specify the fraction length directly as the fourth numeric argument in the
fi constructor or the third numeric argument in the sfi or ufi constructor.
In the following, compare the fraction length of a, which was explicitly set to
0, to the fraction length of b, which was set to best precision for the magnitude
of the value.

a = sfi(10,16,0)

a =

10

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 0

b = sfi(10,16)

b =

10

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 11

Note that the stored integer values of a and b are different, even though their
real-world values are the same. This is because the real-world value of a is
the stored integer scaled by 2^0 = 1, while the real-world value of b is the
stored integer scaled by 2^-11 = 0.00048828125.

storedInteger(a)

3-11

3 Fixed-Point Topics

ans =

10

storedInteger(b)

ans =

20480

Specifying Properties with Parameter/Value Pairs

Thus far, we have been specifying the numeric type properties by passing
numeric arguments to the fi constructor. We can also specify properties
by giving the name of the property as a string followed by the value of the
property:

a = fi(pi,'WordLength',20)

a =

3.14159393310547

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 20

FractionLength: 17

For more information on fi properties, type

help fi

or

doc fi

3-12

Set Up Fixed-Point Objects

at the MATLAB command line.

Numeric Type Properties

All of the numeric type properties of fi are encapsulated in an object named
numerictype:

T = numerictype

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

The numeric type properties can be modified either when the object is created
by passing in parameter/value arguments

T = numerictype('WordLength',40,'FractionLength',37)

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 40

FractionLength: 37

or they may be assigned by using the dot notation

T.Signed = false

T =

DataTypeMode: Fixed-point: binary point scaling

3-13

3 Fixed-Point Topics

Signedness: Unsigned
WordLength: 40

FractionLength: 37

All of the numeric type properties of a fi may be set at once by passing in
the numerictype object. This is handy, for example, when creating more than
one fi object that share the same numeric type.

a = fi(pi,'numerictype',T)

a =

3.14159265359194

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 40

FractionLength: 37

b = fi(exp(1),'numerictype',T)

b =

2.71828182845638

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 40

FractionLength: 37

The numerictype object may also be passed directly to the fi constructor

a1 = fi(pi,T)

a1 =

3.14159265359194

3-14

Set Up Fixed-Point Objects

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 40

FractionLength: 37

For more information on numerictype properties, type

help numerictype

or

doc numerictype

at the MATLAB command line.

Display Preferences

The display preferences for fi can be set with the fipref object. They can be
saved between MATLAB sessions with the savefipref command.

Display of Real-World Values

When displaying real-world values, the closest double-precision floating-point
value is displayed. As we have seen, double-precision floating-point may
not always be able to represent the exact value of high-precision fixed-point
number. For example, an 8-bit fractional number can be represented exactly
in doubles

a = sfi(1,8,7)

a =

0.9921875

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 7

3-15

3 Fixed-Point Topics

bin(a)

ans =

01111111

while a 100-bit fractional number cannot (1 is displayed, when the exact value
is 1 - 2^-99):

b = sfi(1,100,99)

b =

1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 100

FractionLength: 99

Note, however, that the full precision is preserved in the internal
representation of fi

bin(b)

ans =

011

The display of the fi object is also affected by MATLAB’s format command.
In particular, when displaying real-world values, it is handy to use

format long g

so that as much precision as is possible will be displayed.

3-16

Set Up Fixed-Point Objects

There are also other display options to make a more shorthand display of the
numeric type properties, and options to control the display of the value (as
real-world value, binary, octal, decimal integer, or hex).

For more information on display preferences, type

help fipref
help savefipref
help format

or

doc fipref
doc savefipref
doc format

at the MATLAB command line.

Cleanup

The following code sets any display settings or preferences that the example
changed back to their original states.

% Reset the fi display and logging preferences
fipref(fiprefAtStartOfThisExample);

3-17

3 Fixed-Point Topics

View Fixed-Point Number Circles
This example shows how to define unsigned and signed two’s complement
integer and fixed-point numbers.

Fixed-Point Number Definitions

This example illustrates the definitions of unsigned and
signed-two’s-complement integer and fixed-point numbers.

Unsigned Integers.

Unsigned integers are represented in the binary number system in the
following way. Let

b = [b(n) b(n-1) ... b(2) b(1)]

be the binary digits of an n-bit unsigned integer, where each b(i) is either
one or zero. Then the value of b is

u = b(n)*2^(n-1) + b(n-1)*2^(n-2) + ... + b(2)*2^(1) + b(1)*2^(0)

For example, let’s define a 3-bit unsigned integer quantizer, and enumerate
its range.

q = quantizer('ufixed',[3 0]);
[a,b] = range(q);
u = (a:eps(q):b)'

% Now, let's display those values in binary.
b = num2bin(q,u)

u =

0
1
2
3
4
5

3-18

View Fixed-Point Number Circles

6
7

b =

000
001
010
011
100
101
110
111

Unsigned Integer Number Circle.

Let’s array them around a clock face with their corresponding binary and
decimal values.

fidemo.numbercircle(q);

3-19

3 Fixed-Point Topics

Unsigned Fixed-Point.

Unsigned fixed-point values are unsigned integers that are scaled by a power
of two. We call the negative exponent of the power of two the "fractionlength".

If the unsigned integer u is defined as before, and the fractionlength is f, then
the value of the unsigned fixed-point number is

uf = u*2^-f

For example, let’s define a 3-bit unsigned fixed-point quantizer with a
fractionlength of 1, and enumerate its range.

q = quantizer('ufixed',[3 1]);
[a,b] = range(q);
uf = (a:eps(q):b)'

% Now, let's display those values in binary.
b = num2bin(q,uf)

3-20

View Fixed-Point Number Circles

uf =

0
0.5

1
1.5

2
2.5

3
3.5

b =

000
001
010
011
100
101
110
111

Unsigned Fixed-Point Number Circle.

Let’s array them around a clock face with their corresponding binary and
decimal values.

fidemo.numbercircle(q);

3-21

3 Fixed-Point Topics

Unsigned Fractional Fixed-Point.

Unsigned fractional fixed-point numbers are fixed-point numbers whos
fractionlength f is equal to the wordlength n, which produces a scaling such
that the range of numbers is between 0 and 1-2^-f, inclusive. This is the most
common form of fixed-point numbers because it has the nice property that all
of the numbers are less than one, and the product of two numbers less than
one is a number less than one, and so multiplication does not overflow.

Thus, the definition of unsigned fractional fixed-point is the same as unsigned
fixed-point, with the restriction that f=n, where n is the wordlength in bits.

uf = u*2^-f

For example, let’s define a 3-bit unsigned fractional fixed-point quantizer,
which implies a fractionlength of 3.

q = quantizer('ufixed',[3 3]);
[a,b] = range(q);
uf = (a:eps(q):b)'

3-22

View Fixed-Point Number Circles

% Now, let's display those values in binary.
b = num2bin(q,uf)

uf =

0
0.125
0.25

0.375
0.5

0.625
0.75

0.875

b =

000
001
010
011
100
101
110
111

Unsigned Fractional Fixed-Point Number Circle.

Let’s array them around a clock face with their corresponding binary and
decimal values.

fidemo.numbercircle(q);

3-23

3 Fixed-Point Topics

Signed Two’s-Complement Integers.

Signed integers are represented in two’s-complement in the binary number
system in the following way. Let

b = [b(n) b(n-1) ... b(2) b(1)]

be the binary digits of an n-bit signed integer, where each b(i) is either one or
zero. Then the value of b is

s = -b(n)*2^(n-1) + b(n-1)*2^(n-2) + ... + b(2)*2^(1) + b(1)*2^(0)

Note that the difference between this and the unsigned number is the
negative weight on the most-significant-bit (MSB).

For example, let’s define a 3-bit signed integer quantizer, and enumerate
its range.

q = quantizer('fixed',[3 0]);
[a,b] = range(q);

3-24

View Fixed-Point Number Circles

s = (a:eps(q):b)'

% Now, let's display those values in binary.
b = num2bin(q,s)

% Note that the most-significant-bit of negative numbers is 1, and positive
% numbers is 0.

s =

-4
-3
-2
-1
0
1
2
3

b =

100
101
110
111
000
001
010
011

Signed Two’s-Complement Integer Number Circle.

Let’s array them around a clock face with their corresponding binary and
decimal values.

The reason for this ungainly looking definition of negative numbers is that
addition of all numbers, both positive and negative, is carried out as if they

3-25

3 Fixed-Point Topics

were all positive, and then the n+1 carry bit is discarded. The result will be
correct if there is no overflow.

fidemo.numbercircle(q);

Signed Fixed-Point.

Signed fixed-point values are signed integers that are scaled by a power of
two. We call the negative exponent of the power of two the "fractionlength".

If the signed integer s is defined as before, and the fractionlength is f, then
the value of the signed fixed-point number is

sf = s*2^-f

For example, let’s define a 3-bit signed fixed-point quantizer with a
fractionlength of 1, and enumerate its range.

q = quantizer('fixed',[3 1]);
[a,b] = range(q);

3-26

View Fixed-Point Number Circles

sf = (a:eps(q):b)'

% Now, let's display those values in binary.
b = num2bin(q,sf)

sf =

-2
-1.5

-1
-0.5

0
0.5

1
1.5

b =

100
101
110
111
000
001
010
011

Signed Fixed-Point Number Circle.

Let’s array them around a clock face with their corresponding binary and
decimal values.

fidemo.numbercircle(q);

3-27

3 Fixed-Point Topics

Signed Fractional Fixed-Point.

Signed fractional fixed-point numbers are fixed-point numbers whos
fractionlength f is one less than the wordlength n, which produces a scaling
such that the range of numbers is between -1 and 1-2^-f, inclusive. This is the
most common form of fixed-point numbers because it has the nice property
that the product of two numbers less than one is a number less than one, and
so multiplication does not overflow. The only exception is the case when we
are multiplying -1 by -1, because +1 is not an element of this number system.
Some processors have a special multiplication instruction for this situation,
and some add an extra bit in the product to guard against this overflow.

Thus, the definition of signed fractional fixed-point is the same as signed
fixed-point, with the restriction that f=n-1, where n is the wordlength in bits.

sf = s*2^-f

For example, let’s define a 3-bit signed fractional fixed-point quantizer, which
implies a fractionlength of 2.

3-28

View Fixed-Point Number Circles

q = quantizer('fixed',[3 2]);
[a,b] = range(q);
sf = (a:eps(q):b)'

% Now, let's display those values in binary.
b = num2bin(q,sf)

sf =

-1
-0.75
-0.5

-0.25
0

0.25
0.5

0.75

b =

100
101
110
111
000
001
010
011

Signed Fractional Fixed-Point Number Circle.

Let’s array them around a clock face with their corresponding binary and
decimal values.

fidemo.numbercircle(q);

3-29

3 Fixed-Point Topics

3-30

Perform Binary-Point Scaling

Perform Binary-Point Scaling
This example shows how to perform binary point scaling in FI.

FI Construction

a = fi(v,s,w,f) returns a fi with value v, signedness s, word length w,
and fraction length f.

If s is true (signed) the leading or most significant bit (MSB) in the resulting
fi is always the sign bit.

Fraction length f is the scaling 2^(-f).

For example, create a signed 8-bit long fi with a value of 0.5 and a scaling
of 2^(-7):

a = fi(0.5,true,8,7)

a =

0.5

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 7

Fraction Length and the Position of the Binary Point

The fraction length or the scaling determines the position of the binary point
in the fi object.

The Fraction Length is Positive and Less than the Word Length

When the fraction length f is positive and less than the word length, the
binary point lies f places to the left of the least significant bit (LSB) and
within the word.

3-31

3 Fixed-Point Topics

For example, in a signed 3-bit fi with fraction length of 1 and value -0.5, the
binary point lies 1 place to the left of the LSB. In this case each bit is set to 1
and the binary equivalent of the fi with its binary point is 11.1 .

The real world value of -0.5 is obtained by multiplying each bit by its scaling
factor, starting with the LSB and working up to the signed MSB.

(1*2^-1) + (1*2^0) +(-1*2^1) = -0.5

storedInteger(a) returns the stored signed, unscaled integer value -1.

(1*2^0) + (1*2^1) +(-1*2^2) = -1

a = fi(-0.5,true,3,1)
bin(a)
storedInteger(a)

a =

-0.5

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 3

FractionLength: 1

ans =

111

ans =

-1

The Fraction Length is Positive and Greater than the Word Length

3-32

Perform Binary-Point Scaling

When the fraction length f is positive and greater than the word length, the
binary point lies f places to the left of the LSB and outside the word.

For example the binary equivalent of a signed 3-bit word with fraction length
of 4 and value of -0.0625 is ._111 Here _ in the ._111 denotes an unused
bit that is not a part of the 3-bit word. The first 1 after the _ is the MSB or
the sign bit.

The real world value of -0.0625 is computed as follows (LSB to MSB).

(1*2^-4) + (1*2^-3) + (-1*2^-2) = -0.0625

bin(b) will return 111 at the MATLAB prompt and storedInteger(b) = -1

b = fi(-0.0625,true,3,4)
bin(b)
storedInteger(b)

b =

-0.0625

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 3

FractionLength: 4

ans =

111

ans =

-1

The Fraction Length is a Negative Integer and Less than the Word Length

3-33

3 Fixed-Point Topics

When the fraction length f is negative the binary point lies f places to the
right of LSB and is outside the physical word.

For instance in c = fi(-4,true,3,-2) the binary point lies 2 places to the
right of the LSB 111__.. Here the two right most spaces are unused bits that
are not part of the 3-bit word. The right most 1 is the LSB and the leading
1 is the sign bit.

The real world value of -4 is obtained by multiplying each bit by its scaling
factor 2^(-f), i.e. 2(-(-2)) = 2^(2) for the LSB, and then adding the
products together.

(1*2^2) + (1*2^3) +(-1*2^4) = -4

bin(c) and storedInteger(c) will still give 111 and -1 as in the previous
two examples.

c = fi(-4,true,3,-2)
bin(c)
storedInteger(c)

c =

-4

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 3

FractionLength: -2

ans =

111

ans =

-1

3-34

Perform Binary-Point Scaling

The Fraction Length is Set Automatically to the Best Precision Possible and is
Negative

In this example we create a signed 3-bit fi where the fraction length is set
automatically depending on the value that the fi is supposed to contain.
The resulting fi has a value of 6, with a wordlength of 3 bits and a fraction
length of -1. Here the binary point is 1 place to the right of the LSB: 011_..
The _ is again an unused bit and the first 1 before the _ is the LSB. The
leading 1 is the sign bit.

The real world value (6) is obtained as follows:

(1*2^1) + (1*2^2) + (-0*2^3) = 6

bin(d) and storedInteger(d) will give 011 and 3 respectively.

d = fi(5,true,3)
bin(d)
storedInteger(d)

d =

6

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 3

FractionLength: -1

ans =

011

ans =

3

3-35

3 Fixed-Point Topics

Interactive FI Binary Point Scaling Example

This is an interactive example that allows the user to change the fraction
length of a 3-bit fixed-point number by moving the binary point using a slider.
The fraction length can be varied from -3 to 5 and the user can change the
value of the 3 bits to ’0’ or ’1’ for either signed or unsigned numbers.

The "Scaling factors" above the 3 bits display the scaling or weight that each
bit is given for the specified signedness and fraction length. The fi code,
the double precision real-world value and the fixed-point attributes are also
displayed.

Type fibinscaling at the MATLAB prompt to run this example.

3-36

Develop Fixed-Point Algorithms

Develop Fixed-Point Algorithms
This example shows how to develop and verify a simple fixed-point algorithm.

Simple Example of Algorithm Development

This example shows the development and verification of a simple fixed-point
filter algorithm. We will follow the following steps:

1) Implement a second order filter algorithm and simulate in double-precision
floating-point.

2) Instrument the code to visualize the dynamic range of the output and state.

3) Convert the algorithm to fixed-point by changing the data type of the
variables - the algorithm itself does not change.

4) Compare and plot the fixed-point and floating-point results.

Floating-Point Variable Definitions

We develop our algorithm in double-precision floating-point. We will use a
second-order lowpass filter to remove the high frequencies in the input signal.

b = [0.25 0.5 0.25]; % Numerator coefficients
a = [1 0.09375 0.28125]; % Denominator coefficients
% Random input that has both high and low frequencies.
s = rng; rng(0,'v5uniform');
x = randn(1000,1);
rng(s); % restore RNG state
% Pre-allocate the output and state for speed.
y = zeros(size(x));
z = [0;0];

Data-Type-Independent Algorithm

This is a second-order filter that implements the standard difference equation:

y(n) = b(1)*x(n) + b(2)*x(n-1) + b(3)*x(n-2) - a(2)*y(n-1) - a(3)*y(n-2)

for k=1:length(x)

3-37

3 Fixed-Point Topics

y(k) = b(1)*x(k) + z(1);
z(1) = (b(2)*x(k) + z(2)) - a(2)*y(k);
z(2) = b(3)*x(k) - a(3)*y(k);

end

% Save the Floating-Point Result
ydouble = y;

Visualize Dynamic Range

In order to convert to fixed-point, we need to know the range of the variables.
Depending on the complexity of an algorithm, this task can be simple or
quite challenging. In this example, the range of the input value is known, so
selecting an appropriate fixed-point data type is simple. We will concentrate
on the output (y) and states (z) since their range is unknown. To view the
dynamic range of the output and states, we will modify the code slightly to
instrument it. We will create two NumericTypeScope objects and view the
dynamic range of the output (y) and states (z) simultaneously.

Instrument Floating-Point Code

hscope1 = NumericTypeScope;
hscope2 = NumericTypeScope;
for k=1:length(x)

y(k) = b(1)*x(k) + z(1);
z(1) = (b(2)*x(k) + z(2)) - a(2)*y(k);
z(2) = b(3)*x(k) - a(3)*y(k);
% process the data and update the visual.
step(hscope1,z);

end
step(hscope2,y);

3-38

Develop Fixed-Point Algorithms

3-39

3 Fixed-Point Topics

Analyze Information in the Scope

Let us first analyze the information displayed for variable z (state). From the
histogram we can see that the dynamic range lies between (].

By default, the scope uses a word length of 16 bits with zero tolerable
overflows. This results in a data type of numerictype(true,16, 14) since we
need at least 1 integer bit to avoid overflows. With this suggested type, values
that require more than 14 fractional bits to represent itself will cause an
underflow, which is 0.1% in this case and is negligible. You can get more
information on the statistical data from the Input Data and Resulting Type
panels. From the Input Data panel we can see that the data has both positive
and negative values and hence a signed quantity which is reflected in the
suggested numerictype. Also, the maximum data value is 1.8 which can be
represented by the suggested type.

3-40

Develop Fixed-Point Algorithms

Next, let us look at variable y (output). From the histogram plot we see that
the dynamic range lies between (].

By default, the scope uses a word length of 16 bits with zero tolerable
overflows. This results in a data type of numerictype(true,16, 13) since we
need at least 2 integer bits to avoid overflows. With this suggested type you
see no overflows or underflows. Supposing the application is tolerant to a
small amount of overflows, we can optimize the wordsize further. By setting
the Maximum Overflow parameter on the Bit Allocation panel to 0.5%, we can
reduce the integer length by 1 bit and gain more precision.

Fixed-Point Variable Definitions

We convert variables to fixed-point and run the algorithm again. We will turn
on logging to see the overflows and underflows introduced by the selected
data types.

% Turn on logging to see overflows/underflows.
fp = fipref;
default_loggingmode = fp.LoggingMode;
fp.LoggingMode = 'On';
% Capture the present state of and reset the global fimath to the factory
% settings.
globalFimathAtStart = fimath;
resetglobalfimath;
% Define the fixed-point types for the variables in the below format:
% fi(Data, Signed, WordLength, FractionLength)
b = fi(b, 1, 8, 6);
a = fi(a, 1, 8, 6);

x = fi(x, 1, 16, 13);
y = fi(zeros(size(x)), 1, 16, 13);
z = fi([0;0], 1, 16, 14);

Same Data-Type-Independent Algorithm

for k=1:length(x)
y(k) = b(1)*x(k) + z(1);
z(1) = (b(2)*x(k) + z(2)) - a(2)*y(k);
z(2) = b(3)*x(k) - a(3)*y(k);

3-41

3 Fixed-Point Topics

end
% Reset the logging mode.
fp.LoggingMode = default_loggingmode;

In this example, we have redefined the fixed-point variables with the same
names as the floating-point so that we could inline the algorithm code for
clarity. However, it is a better practice to enclose the algorithm code in a
MATLAB file function that could be called with either floating-point or
fixed-point variables. See filimitcycledemo.m for an example of writing and
using a datatype-agnostic algorithm.

Compare and Plot the Floating-Point and Fixed-Point Results

We will now plot the magnitude response of the floating-point and fixed-point
results and the response of the filter to see if the filter behaves as expected
when it is converted to fixed-point.

n = length(x);
f = linspace(0,0.5,n/2);
x_response = 20*log10(abs(fft(double(x))));
ydouble_response = 20*log10(abs(fft(ydouble)));
y_response = 20*log10(abs(fft(double(y))));
plot(f,x_response(1:n/2),'c-',...

f,ydouble_response(1:n/2),'bo-',...
f,y_response(1:n/2),'gs-');

ylabel('Magnitude in dB');
xlabel('Normalized Frequency');
legend('Input','Floating point output','Fixed point output','Location','Bes
title('Magnitude response of Floating-point and Fixed-point results');

3-42

Develop Fixed-Point Algorithms

h = freqz(double(b),double(a),n/2);
clf
hax = axes;
plot(hax,f,20*log10(abs(h)));
set(hax,'YLim',[-40 0]);
title('Magnitude response of the filter');
ylabel('Magnitude in dB')
xlabel('Frequency');

3-43

3 Fixed-Point Topics

Notice that the high frequencies in the input signal are attenuated by the
low-pass filter which is the expected behavior.

Plot the Error

clf
n = (0:length(y)-1)';
e = double(lsb(y));
plot(n,double(y)-ydouble,'.-r', ...

[n(1) n(end)],[e/2 e/2],'c', ...
[n(1) n(end)],[-e/2 -e/2],'c')

text(n(end),e/2,'+1/2 LSB','HorizontalAlignment','right','VerticalAlignment
text(n(end),-e/2,'-1/2 LSB','HorizontalAlignment','right','VerticalAlignmen
xlabel('n (samples)'); ylabel('error')

3-44

Develop Fixed-Point Algorithms

Simulink

If you have Simulink and Simulink Fixed Point™, you can run this model,
which is the equivalent of the algorithm above. The output, y_sim is a
fixed-point variable equal to the variable y calculated above in MATLAB code.

As in the MATLAB code, the fixed-point parameters in the blocks can be
modified to match an actual system; these have been set to match the
MATLAB code in the example above. Double-click on the blocks to see the
settings.

if fidemo.hasSimulinkFixedPointLicense

% Set up the From Workspace variable
x_sim.time = n;
x_sim.signals.values = x;
x_sim.signals.dimensions = 1;

% Run the simulation

3-45

3 Fixed-Point Topics

out_sim = sim('fitdf2filter_demo', 'SaveOutput', 'on', ...
'SrcWorkspace', 'current');

% Open the model
fitdf2filter_demo

% Verify that the Simulink results are the same as the MATLAB file
isequal(y, out_sim.get('y_sim'))

end

ans =

1

Assumptions Made for this Example

3-46

Develop Fixed-Point Algorithms

In order to simplify the example, we have taken the default math parameters:
round-to-nearest, saturate on overflow, full precision products and sums. We
can modify all of these parameters to match an actual system.

The settings were chosen as a starting point in algorithm development. Save
a copy of this MATLAB file, start playing with the parameters, and see what
effects they have on the output. How does the algorithm behave with a
different input? See the help for fi, fimath, and numerictype for information
on how to set other parameters, such as rounding mode, and overflow mode.

close all force;
bdclose all;
% Reset the global fimath
globalfimath(globalFimathAtStart);

3-47

3 Fixed-Point Topics

Calculate Fixed-Point Sine and Cosine
This example shows how to use both CORDIC-based and lookup table-based
algorithms provided by the Fixed-Point Toolbox™ to approximate the
MATLAB sine (SIN) and cosine (COS) functions. Efficient fixed-point sine and
cosine algorithms are critical to many embedded applications, including motor
controls, navigation, signal processing, and wireless communications.

Calculating Sine and Cosine Using the CORDIC Algorithm

Introduction

The cordiccexp, cordicsincos, cordicsin, and cordiccos functions
approximate the MATLAB sin and cos functions using a CORDIC-based
algorithm. CORDIC is an acronym for COordinate Rotation DIgital
Computer. The Givens rotation-based CORDIC algorithm (see [1,2]) is one
of the most hardware efficient algorithms because it only requires iterative
shift-add operations. The CORDIC algorithm eliminates the need for explicit
multipliers, and is suitable for calculating a variety of functions, such as sine,
cosine, arcsine, arccosine, arctangent, vector magnitude, divide, square root,
hyperbolic and logarithmic functions.

You can use the CORDIC rotation computing mode to calculate sine and
cosine, and also polar-to-cartesian conversion operations. In this mode, the
vector magnitude and an angle of rotation are known and the coordinate (X-Y)
components are computed after rotation.

CORDIC Rotation Computation Mode

The CORDIC rotation mode algorithm begins by initializing an angle
accumulator with the desired rotation angle. Next, the rotation decision at
each CORDIC iteration is done in a way that decreases the magnitude of the
residual angle accumulator. The rotation decision is based on the sign of the
residual angle in the angle accumulator after each iteration.

In rotation mode, the CORDIC equations are:

3-48

Calculate Fixed-Point Sine and Cosine

where if , and otherwise;

, and is the total number of iterations.

This provides the following result as approaches :

Where:

.

In rotation mode, the CORDIC algorithm is limited to rotation angles between
and . To support angles outside of that range, the cordiccexp,

cordicsincos, cordicsin, and cordiccos functions use quadrant correction
(including possible extra negation) after the CORDIC iterations are completed.

Understanding the CORDICSINCOS Sine and Cosine Code

Introduction

The cordicsincos function calculates the sine and cosine of input angles
in the range [-2*pi 2*pi) using the CORDIC algorithm. This function takes
an angle (radians) and the number of iterations as input arguments. The
function returns approximations of sine and cosine.

The CORDIC computation outputs are scaled by the rotator gain. This gain is
accounted for by pre-scaling the initial constant value.

Initialization

The cordicsincos function performs the following initialization steps:

3-49

3 Fixed-Point Topics

• The angle input look-up table inpLUT is set to atan(2 .^ -(0:N-1)).

• is set to the input argument value.

• is set to .

• is set to zero.

The judicious choice of initial values allows the algorithm to directly compute
both sine and cosine simultaneously. After iterations, these initial values
lead to the following outputs as approaches :

Shared Fixed-Point and Floating-Point CORDIC Kernel Code

The MATLAB code for the CORDIC algorithm (rotation mode) kernel portion
is as follows (for the case of scalar x, y, and z). This same code is used for both
fixed-point and floating-point operations:

function [x, y, z] = cordic_rotation_kernel(x, y, z, inpLUT, n)
% Perform CORDIC rotation kernel algorithm for N kernel iterations.
xtmp = x;
ytmp = y;
for idx = 1:n

if z < 0
z(:) = accumpos(z, inpLUT(idx));
x(:) = accumpos(x, ytmp);
y(:) = accumneg(y, xtmp);

else
z(:) = accumneg(z, inpLUT(idx));
x(:) = accumneg(x, ytmp);
y(:) = accumpos(y, xtmp);

end
xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)
ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)

end

Visualizing the Sine-Cosine Rotation Mode CORDIC Iterations

3-50

Calculate Fixed-Point Sine and Cosine

The CORDIC algorithm is usually run through a specified (constant) number
of iterations since ending the CORDIC iterations early would break pipelined
code, and the CORDIC gain would not be constant because would vary.

For very large values of , the CORDIC algorithm is guaranteed to converge,
but not always monotonically. As will be shown in the following example,
intermediate iterations occasionally produce more accurate results than later
iterations. You can typically achieve greater accuracy by increasing the total
number of iterations.

Example

In the following example, iteration 5 provides a better estimate of the result
than iteration 6, and the CORDIC algorithm converges in later iterations.

theta = pi/5; % input angle in radians
niters = 10; % number of iterations
sinTh = sin(theta); % reference result
cosTh = cos(theta); % reference result
y_sin = zeros(niters, 1);
sin_err = zeros(niters, 1);
x_cos = zeros(niters, 1);
cos_err = zeros(niters, 1);
fprintf('\n\nNITERS \tERROR\n');
fprintf('------\t----------\n');
for n = 1:niters

[y_sin(n), x_cos(n)] = cordicsincos(theta, n);
sin_err(n) = abs(y_sin(n) - sinTh);
cos_err(n) = abs(x_cos(n) - cosTh);
if n < 10

fprintf(' %d \t %1.8f\n', n, cos_err(n));
else

fprintf(' %d \t %1.8f\n', n, cos_err(n));
end

end
fprintf('\n');

NITERS ERROR

3-51

3 Fixed-Point Topics

------ ----------
1 0.10191021
2 0.13966630
3 0.03464449
4 0.03846157
5 0.00020393
6 0.01776952
7 0.00888037
8 0.00436052
9 0.00208192

10 0.00093798

Plot the CORDIC approximation error on a bar graph

figure(1); clf;
bar(1:niters, cos_err(1:niters));
xlabel('Number of iterations','fontsize',12,'fontweight','b');
ylabel('Error','fontsize',12,'fontweight','b');
title('CORDIC approximation error for cos(pi/5) computation',...

'fontsize',12,'fontweight','b');
axis([0 niters 0 0.14]);

3-52

Calculate Fixed-Point Sine and Cosine

Plot the X-Y results for 5 iterations

Niter2Draw = 5;
figure(2), clf, hold on
plot(cos(0:0.1:pi/2), sin(0:0.1:pi/2), 'b--'); % semi-circle
for i=1:Niter2Draw

plot([0 x_cos(i)],[0 y_sin(i)], 'LineWidth', 2); % CORDIC iteration res
text(x_cos(i),y_sin(i),int2str(i),'fontsize',12,'fontweight','b');

end
plot(cos(theta), sin(theta), 'r*', 'MarkerSize', 20); % IDEAL result
xlabel('X (COS)','fontsize',12,'fontweight','b')
ylabel('Y (SIN)','fontsize',12,'fontweight','b')
title('CORDIC iterations for cos(pi/5) computation',...

'fontsize',12,'fontweight','b')
axis equal;
axis square;

3-53

3 Fixed-Point Topics

Computing Fixed-point Sine with cordicsin

Create 1024 points between [-2*pi, 2*pi)

stepSize = pi/256;
thRadDbl = (-2*pi):stepSize:(2*pi - stepSize);
thRadFxp = sfi(thRadDbl, 12); % signed, 12-bit fixed-point values
sinThRef = sin(double(thRadFxp)); % reference results

Compare fixed-point CORDIC vs. double-precision trig function
results

Use 12-bit quantized inputs and vary number of iterations from 4 to 10.

for niters = 4:3:10
cdcSinTh = cordicsin(thRadFxp, niters);
errCdcRef = sinThRef - double(cdcSinTh);
figure; hold on; axis([-2*pi 2*pi -1.25 1.25]);
plot(thRadFxp, sinThRef, 'b');
plot(thRadFxp, cdcSinTh, 'g');

3-54

Calculate Fixed-Point Sine and Cosine

plot(thRadFxp, errCdcRef, 'r');
ylabel('sin(\Theta)','fontsize',12,'fontweight','b');
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',...

{'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...
'0', 'pi/2', 'pi', '3*pi/2','2*pi'});

set(gca,'YTick',-1:0.5:1);
set(gca,'YTickLabel',{'-1.0','-0.5','0','0.5','1.0'});
ref_str = 'Reference: sin(double(\Theta))';
cdc_str = sprintf('12-bit CORDICSIN; N = %d', niters);
err_str = sprintf('Error (max = %f)', max(abs(errCdcRef)));
legend(ref_str, cdc_str, err_str);
title(cdc_str,'fontsize',12,'fontweight','b');

end

3-55

3 Fixed-Point Topics

3-56

Calculate Fixed-Point Sine and Cosine

Compute the LSB Error for N = 10

figure;
fracLen = cdcSinTh.FractionLength;
plot(thRadFxp, abs(errCdcRef) * pow2(fracLen));
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',...

{'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...
'0', 'pi/2', 'pi', '3*pi/2','2*pi'});

ylabel(sprintf('LSB Error: 1 LSB = 2^{-%d}',fracLen),'fontsize',12,'fontwei
title('LSB Error: 12-bit CORDICSIN; N=10','fontsize',12,'fontweight','b');
axis([-2*pi 2*pi 0 6]);

3-57

3 Fixed-Point Topics

Compute Noise Floor

fft_mag = abs(fft(double(cdcSinTh)));
max_mag = max(fft_mag);
mag_db = 20*log10(fft_mag/max_mag);
figure;
hold on;
plot(0:1023, mag_db);
plot(0:1023, zeros(1,1024),'r--'); % Normalized peak (0 dB)
plot(0:1023, -62.*ones(1,1024),'r--'); % Noise floor level
ylabel('dB Magnitude','fontsize',12,'fontweight','b');
title('62 dB Noise Floor: 12-bit CORDICSIN; N=10',...

'fontsize',12,'fontweight','b');
% axis([0 1023 -120 0]); full FFT
axis([0 round(1024*(pi/8)) -100 10]); % zoom in
set(gca,'XTick',[0 round(1024*pi/16) round(1024*pi/8)]);
set(gca,'XTickLabel',{'0','pi/16','pi/8'});

3-58

Calculate Fixed-Point Sine and Cosine

Accelerating the Fixed-Point CORDICSINCOS Function with FIACCEL

You can generate a MEX function from MATLAB code using the MATLAB
fiaccel function. Typically, running a generated MEX function can improve
the simulation speed, although the actual speed improvement depends on
the simulation platform being used. The following example shows how to
accelerate the fixed-point cordicsincos function using fiaccel.

The fiaccel function compiles the MATLAB code into a MEX function. This
step requires the creation of a temporary directory and write permissions
in this directory.

tempdirObj = fidemo.fiTempdir('fi_sin_cos_demo');

When you declare the number of iterations to be a constant (e.g., 10) using
coder.newtype('constant',10), the compiled angle look-up table will also
be constant, and thus won’t be computed at each iteration. Also, when you
call cordicsincos_mex, you will not need to give it the input argument

3-59

3 Fixed-Point Topics

for the number of iterations. If you pass in the number of iterations, the
MEX-function will error.

The data type of the input parameters determines whether the cordicsincos
function performs fixed-point or floating-point calculations. When MATLAB
generates code for this file, code is only generated for the specific data
type. For example, if the THETA input argument is fixed point, then only
fixed-point code is generated.

inp = {thRadFxp, coder.newtype('constant',10)}; % example inputs for the fu
fiaccel('cordicsincos', '-o', 'cordicsincos_mex', '-args', inp)

First, calculate sine and cosine by calling cordicsincos.

tstart = tic;
cordicsincos(thRadFxp,10);
telapsed_Mcordicsincos = toc(tstart);

Next, calculate sine and cosine by calling the MEX-function
cordicsincos_mex.

cordicsincos_mex(thRadFxp); % load the MEX file
tstart = tic;
cordicsincos_mex(thRadFxp);
telapsed_MEXcordicsincos = toc(tstart);

Now, compare the speed. Type the following at the MATLAB command line
to see the speed improvement on your platform:

fiaccel_speedup = telapsed_Mcordicsincos/telapsed_MEXcordicsincos;

To clean up the temporary directory, run the following commands:

clear cordicsincos_mex;
status = tempdirObj.cleanUp;

Calculating SIN and COS Using Lookup Tables

There are many lookup table-based approaches that may be used to
implement fixed-point sine and cosine approximations. The following is a

3-60

Calculate Fixed-Point Sine and Cosine

low-cost approach based on a single real-valued lookup table and simple
nearest-neighbor linear interpolation.

Single Lookup Table Based Approach

The sin and cos methods of the fi object in the Fixed-Point Toolbox
approximate the MATLAB builtin floating-point sin and cos functions,
using a lookup table-based approach with simple nearest-neighbor linear
interpolation between values. This approach allows for a small real-valued
lookup table and uses simple arithmetic.

Using a single real-valued lookup table simplifies the index computation
and the overall arithmetic required to achieve very good accuracy of the
results. These simplifications yield relatively high speed performance and
also relatively low memory requirements.

Understanding the Lookup Table Based SIN and COS Implementation

Lookup Table Size and Accuracy

Two important design considerations of a lookup table are its size and its
accuracy. It is not possible to create a table for every possible input value
. It is also not possible to be perfectly accurate due to the quantization of

or lookup table values.

As a compromise, the Fixed-Point Toolbox SIN and COS methods of FI use
an 8-bit lookup table as part of their implementation. An 8-bit table is only
256 elements long, so it is small and efficient. Eight bits also corresponds
to the size of a byte or a word on many platforms. Used in conjunction
with linear interpolation, and 16-bit output (lookup table value) precision,
an 8-bit-addressable lookup table provides both very good accuracy and
performance.

Initializing the Constant SIN Lookup Table Values

For implementation simplicity, table value uniformity, and speed, a full
sinewave table is used. First, a quarter-wave SIN function is sampled at 64
uniform intervals in the range [0, pi/2) radians. Choosing a signed 16-bit
fractional fixed-point data type for the table values, i.e., tblValsNT =
numerictype(1,16,15), produces best precision results in the SIN output

3-61

3 Fixed-Point Topics

range [-1.0, 1.0). The values are pre-quantized before they are set, to avoid
overflow warnings.

tblValsNT = numerictype(1,16,15);
quarterSinDblFltPtVals = (sin(2*pi*((0:63) ./ 256)))';
endpointQuantized_Plus1 = 1.0 - double(eps(fi(0,tblValsNT)));

halfSinWaveDblFltPtVals = ...
[quarterSinDblFltPtVals; ...
endpointQuantized_Plus1; ...
flipud(quarterSinDblFltPtVals(2:end))];

fullSinWaveDblFltPtVals = ...
[halfSinWaveDblFltPtVals; -halfSinWaveDblFltPtVals];

FI_SIN_LUT = fi(fullSinWaveDblFltPtVals, tblValsNT);

Overview of Algorithm Implementation

The implementation of the Fixed-Point Toolbox sin and cos methods of fi
objects involves first casting the fixed-point angle inputs (in radians) to a
pre-defined data type in the range [0, 2pi]. For this purpose, a modulo-2pi
operation is performed to obtain the fixed-point input value inpValInRange
in the range [0, 2pi] and cast to in the best precision binary point scaled
unsigned 16-bit fixed-point type numerictype(0,16,13):

% Best UNSIGNED type for real-world value range [0, 2*pi],
% which maps to fixed-point stored integer vals [0, 51472].
inpInRangeNT = numerictype(0,16,13);

Next, we get the 16-bit stored unsigned integer value from this in-range
fixed-point FI angle value:

idxUFIX16 = fi(storedInteger(inpValInRange), numerictype(0,16,0));

We multiply the stored integer value by a normalization constant,
65536/51472. The resulting integer value will be in a full-scale uint16 index
range:

normConst_NT = numerictype(0,32,31);
normConstant = fi(65536/51472, normConst_NT);

3-62

Calculate Fixed-Point Sine and Cosine

fullScaleIdx = normConstant * idxUFIX16;
idxUFIX16(:) = fullScaleIdx;

The top 8 most significant bits (MSBs) of this full-scale unsigned 16-bit
index idxUFIX16 are used to directly index into the 8-bit sine lookup table.
Two table lookups are performed, one at the computed table index location
lutValBelow, and one at the next index location lutValAbove:

idxUint8MSBs = uint8(storedInteger(bitsliceget(idxUFIX16, 16, 9)));
zeroBasedIdx = int16(idxUint8MSBs);
lutValBelow = FI_SIN_LUT(zeroBasedIdx + 1);
lutValAbove = FI_SIN_LUT(zeroBasedIdx + 2);

The remaining 8 least significant bits (LSBs) of idxUFIX16 are used to
interpolate between these two table values. The LSB values are treated as a
normalized scaling factor with 8-bit fractional data type rFracNT:

rFracNT = numerictype(0,8,8); % fractional remainder data type
idxFrac8LSBs = reinterpretcast(bitsliceget(idxUFIX16,8,1), rFracNT);
rFraction = idxFrac8LSBs;

A real multiply is used to determine the weighted difference between the two
points. This results in a simple calculation (equivalent to one product and two
sums) to obtain the interpolated fixed-point sine result:

temp = rFraction * (lutValAbove - lutValBelow);
rslt = lutValBelow + temp;

Example

Using the above algorithm, here is an example of the lookup table and linear
interpolation process used to compute the value of SIN for a fixed-point input
inpValInRange = 0.425 radians:

% Use an arbitrary input value (e.g., 0.425 radians)
inpInRangeNT = numerictype(0,16,13); % best precision, [0, 2*pi] radian
inpValInRange = fi(0.425, inpInRangeNT); % arbitrary fixed-point input angl

% Normalize its stored integer to get full-scale unsigned 16-bit integer in
idxUFIX16 = fi(storedInteger(inpValInRange), numerictype(0,16,0));
normConst_NT = numerictype(0,32,31);

3-63

3 Fixed-Point Topics

normConstant = fi(65536/51472, normConst_NT);
fullScaleIdx = normConstant * idxUFIX16;
idxUFIX16(:) = fullScaleIdx;

% Do two table lookups using unsigned 8-bit integer index (i.e., 8 MSBs)
idxUint8MSBs = uint8(storedInteger(bitsliceget(idxUFIX16, 16, 9)));
zeroBasedIdx = int16(idxUint8MSBs); % zero-based table index valu
lutValBelow = FI_SIN_LUT(zeroBasedIdx + 1); % 1st table lookup value
lutValAbove = FI_SIN_LUT(zeroBasedIdx + 2); % 2nd table lookup value

% Do nearest-neighbor interpolation using 8 LSBs (treat as fractional remai
rFracNT = numerictype(0,8,8); % fractional remainder data type
idxFrac8LSBs = reinterpretcast(bitsliceget(idxUFIX16,8,1), rFracNT);
rFraction = idxFrac8LSBs; % fractional value for linear interpolation
temp = rFraction * (lutValAbove - lutValBelow);
rslt = lutValBelow + temp;

Here is a plot of the algorithm results:

x_vals = 0:(pi/128):(pi/4);
xIdxLo = zeroBasedIdx - 1;
xIdxHi = zeroBasedIdx + 4;
figure; hold on; axis([x_vals(xIdxLo) x_vals(xIdxHi) 0.25 0.65]);
plot(x_vals(xIdxLo:xIdxHi), double(FI_SIN_LUT(xIdxLo:xIdxHi)), 'b^--');
plot([x_vals(zeroBasedIdx+1) x_vals(zeroBasedIdx+2)], ...

[lutValBelow lutValAbove], 'k.'); % Closest values
plot(0.425, double(rslt), 'r*'); % Interpolated fixed-point result
plot(0.425, sin(0.425), 'gs'); % Double precision reference result
xlabel('X'); ylabel('SIN(X)');
lut_val_str = 'Fixed-point lookup table values';
near_str = 'Two closest fixed-point LUT values';
interp_str = 'Interpolated fixed-point result';
ref_str = 'Double precision reference value';
legend(lut_val_str, near_str, interp_str, ref_str);
title('Fixed-Point Toolbox Lookup Table Based SIN with Linear Interpolation

'fontsize',12,'fontweight','b');

3-64

Calculate Fixed-Point Sine and Cosine

Computing Fixed-point Sine Using SIN

Create 1024 points between [-2*pi, 2*pi)

stepSize = pi/256;
thRadDbl = (-2*pi):stepSize:(2*pi - stepSize); % double precision floating-
thRadFxp = sfi(thRadDbl, 12); % signed, 12-bit fixed-point inputs

Compare fixed-point SIN vs. double-precision SIN results

fxpSinTh = sin(thRadFxp); % fixed-point results
sinThRef = sin(double(thRadFxp)); % reference results
errSinRef = sinThRef - double(fxpSinTh);
figure; hold on; axis([-2*pi 2*pi -1.25 1.25]);
plot(thRadFxp, sinThRef, 'b');
plot(thRadFxp, fxpSinTh, 'g');
plot(thRadFxp, errSinRef, 'r');
ylabel('sin(\Theta)','fontsize',12,'fontweight','b');
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',...

3-65

3 Fixed-Point Topics

{'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...
'0', 'pi/2', 'pi', '3*pi/2','2*pi'});

set(gca,'YTick',-1:0.5:1);
set(gca,'YTickLabel',{'-1.0','-0.5','0','0.5','1.0'});
ref_str = 'Reference: sin(double(\Theta))';
fxp_str = sprintf('16-bit Fixed-Point SIN with 12-bit Inputs');
err_str = sprintf('Error (max = %f)', max(abs(errSinRef)));
legend(ref_str, fxp_str, err_str);
title(fxp_str,'fontsize',12,'fontweight','b');

Compute the LSB Error

figure;
fracLen = fxpSinTh.FractionLength;
plot(thRadFxp, abs(errSinRef) * pow2(fracLen));
set(gca,'XTick',-2*pi:pi/2:2*pi);
set(gca,'XTickLabel',...

{'-2*pi', '-3*pi/2', '-pi', '-pi/2', ...
'0', 'pi/2', 'pi', '3*pi/2','2*pi'});

3-66

Calculate Fixed-Point Sine and Cosine

ylabel(sprintf('LSB Error: 1 LSB = 2^{-%d}',fracLen),'fontsize',12,'fontwei
title('LSB Error: 16-bit Fixed-Point SIN with 12-bit Inputs','fontsize',12,
axis([-2*pi 2*pi 0 8]);

Compute Noise Floor

fft_mag = abs(fft(double(fxpSinTh)));
max_mag = max(fft_mag);
mag_db = 20*log10(fft_mag/max_mag);
figure;
hold on;
plot(0:1023, mag_db);
plot(0:1023, zeros(1,1024),'r--'); % Normalized peak (0 dB)
plot(0:1023, -64.*ones(1,1024),'r--'); % Noise floor level (dB)
ylabel('dB Magnitude','fontsize',12,'fontweight','b');
title('64 dB Noise Floor: 16-bit Fixed-Point SIN with 12-bit Inputs',...

'fontsize',12,'fontweight','b');
% axis([0 1023 -120 0]); full FFT
axis([0 round(1024*(pi/8)) -100 10]); % zoom in

3-67

3 Fixed-Point Topics

set(gca,'XTick',[0 round(1024*pi/16) round(1024*pi/8)]);
set(gca,'XTickLabel',{'0','pi/16','pi/8'});

Comparing the Costs of the Fixed-Point Approximation Algorithms

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration

• 2 shifts per iteration

• 3 additions per iteration

The simplified single lookup table algorithm with nearest-neighbor linear
interpolatiom requires the following operations:

• 2 table lookups

• 1 multiplication

• 2 additions

3-68

Calculate Fixed-Point Sine and Cosine

In real world applications, selecting an algorithm for the fixed-point
trigonometric function calculations typically depends on the required
accuracy, cost and hardware constraints.

close all; % close all figure windows

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959,
pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on
Field programmable gate arrays, Feb. 22-24, 1998, pp191-200

3-69

3 Fixed-Point Topics

Calculate Fixed-Point Arctangent
This example shows how to use the CORDIC algorithm, polynomial
approximation, and lookup table approaches to calculate the fixed-point, four
quadrant inverse tangent. These implementations are approximations to
the MATLAB built-in function atan2. An efficient fixed-point arctangent
algorithm to estimate an angle is critical to many applications, including
control of robotics, frequency tracking in wireless communications, and many
more.

Calculating atan2(y,x) Using the CORDIC Algorithm

Introduction

The cordicatan2 function approximates the MATLAB atan2 function, using
a CORDIC-based algorithm. CORDIC is an acronym for COordinate Rotation
DIgital Computer. The Givens rotation-based CORDIC algorithm (see [1,2])
is one of the most hardware efficient algorithms because it only requires
iterative shift-add operations. The CORDIC algorithm eliminates the need
for explicit multipliers, and is suitable for calculating a variety of functions,
such as sine, cosine, arcsine, arccosine, arctangent, vector magnitude, divide,
square root, hyperbolic and logarithmic functions.

CORDIC Vectoring Computation Mode

The CORDIC vectoring mode equations are widely used to calculate
atan(y/x). In vectoring mode, the CORDIC rotator rotates the input vector
towards the positive X-axis to minimize the component of the residual
vector. For each iteration, if the coordinate of the residual vector is positive,
the CORDIC rotator rotates clockwise (using a negative angle); otherwise, it
rotates counter-clockwise (using a positive angle). If the angle accumulator is
initialized to 0, at the end of the iterations, the accumulated rotation angle is
the angle of the original input vector.

In vectoring mode, the CORDIC equations are:

3-70

Calculate Fixed-Point Arctangent

is the angle accumulator

where if , and otherwise;

, and is the total number of iterations.

As approaches :

As explained above, the arctangent can be directly computed using the
vectoring mode CORDIC rotator with the angle accumulator initialized to
zero, i.e., and .

Understanding the CORDICATAN2 Code

Introduction

The cordicatan2 function computes the four quadrant arctangent of the
elements of x and y, where . cordicatan2
calculates the arctangent using the vectoring mode CORDIC algorithm,
according to the above CORDIC equations.

Initialization

The cordicatan2 function performs the following initialization steps:

• is set to the initial X input value.

• is set to the initial Y input value.

• is set to zero.

3-71

3 Fixed-Point Topics

After iterations, these initial values lead to

Shared Fixed-Point and Floating-Point CORDIC Kernel Code

The MATLAB code for the CORDIC algorithm (vectoring mode) kernel portion
is as follows (for the case of scalar x, y, and z). This same code is used for both
fixed-point and floating-point operations:

function [x, y, z] = cordic_vectoring_kernel(x, y, z, inpLUT, n)
% Perform CORDIC vectoring kernel algorithm for N kernel iterations.
xtmp = x;
ytmp = y;
for idx = 1:n

if y < 0
x(:) = accumneg(x, ytmp);
y(:) = accumpos(y, xtmp);
z(:) = accumneg(z, inpLUT(idx));

else
x(:) = accumpos(x, ytmp);
y(:) = accumneg(y, xtmp);
z(:) = accumpos(z, inpLUT(idx));

end
xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)
ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)

end

Visualizing the Vectoring Mode CORDIC Iterations

The CORDIC algorithm is usually run through a specified (constant) number
of iterations since ending the CORDIC iterations early would break pipelined
code, and the CORDIC gain would not be constant because would vary.

For very large values of , the CORDIC algorithm is guaranteed to converge,
but not always monotonically. As will be shown in the following example,
intermediate iterations occasionally rotate the vector closer to the positive
X-axis than the following iteration does. You can typically achieve greater
accuracy by increasing the total number of iterations.

Example

3-72

Calculate Fixed-Point Arctangent

In the following example, iteration 5 provides a better estimate of the angle
than iteration 6, and the CORDIC algorithm converges in later iterations.

Initialize the input vector with angle degrees, magnitude = 1

origFormat = get(0, 'format'); % store original format setting;
% restore this setting at the end.

format short
%
theta = 43*pi/180; % input angle in radians
Niter = 10; % number of iterations
inX = cos(theta); % x coordinate of the input vector
inY = sin(theta); % y coordinate of the input vector
%
% pre-allocate memories
zf = zeros(1, Niter);
xf = [inX, zeros(1, Niter)];
yf = [inY, zeros(1, Niter)];
angleLUT = atan(2.^-(0:Niter-1)); % pre-calculate the angle lookup table
%
% Call CORDIC vectoring kernel algorithm
for k = 1:Niter

[xf(k+1), yf(k+1), zf(k)] = fixed.internal.cordic_vectoring_kernel_priva
end

The following output shows the CORDIC angle accumulation (in degrees)
through 10 iterations. Note that the 5th iteration produced less error than
the 6th iteration, and that the calculated angle quickly converges to the
actual input angle afterward.

angleAccumulator = zf*180/pi; angleError = angleAccumulator - theta*180/pi;
fprintf('Iteration: %2d, Calculated angle: %7.3f, Error in degrees: %10g, E

[(1:Niter); angleAccumulator(:)'; angleError(:)';log2(abs(zf(:)'-th

Iteration: 1, Calculated angle: 45.000, Error in degrees: 2, Err
Iteration: 2, Calculated angle: 18.435, Error in degrees: -24.5651, Err
Iteration: 3, Calculated angle: 32.471, Error in degrees: -10.5288, Err
Iteration: 4, Calculated angle: 39.596, Error in degrees: -3.40379, Err
Iteration: 5, Calculated angle: 43.173, Error in degrees: 0.172543, Err
Iteration: 6, Calculated angle: 41.383, Error in degrees: -1.61737, Err

3-73

3 Fixed-Point Topics

Iteration: 7, Calculated angle: 42.278, Error in degrees: -0.722194, Err
Iteration: 8, Calculated angle: 42.725, Error in degrees: -0.27458, Err
Iteration: 9, Calculated angle: 42.949, Error in degrees: -0.0507692, Err
Iteration: 10, Calculated angle: 43.061, Error in degrees: 0.0611365, Err

As N approaches , the CORDIC rotator gain approaches 1.64676. In
this example, the input was on the unit circle, so the initial rotator
magnitude is 1. The following output shows the rotator magnitude through
10 iterations:

rotatorMagnitude = sqrt(xf.^2+yf.^2); % CORDIC rotator gain through iterati
fprintf('Iteration: %2d, Rotator magnitude: %g\n',...

[(0:Niter); rotatorMagnitude(:)']);

Iteration: 0, Rotator magnitude: 1
Iteration: 1, Rotator magnitude: 1.41421
Iteration: 2, Rotator magnitude: 1.58114
Iteration: 3, Rotator magnitude: 1.6298
Iteration: 4, Rotator magnitude: 1.64248
Iteration: 5, Rotator magnitude: 1.64569
Iteration: 6, Rotator magnitude: 1.64649
Iteration: 7, Rotator magnitude: 1.64669
Iteration: 8, Rotator magnitude: 1.64674
Iteration: 9, Rotator magnitude: 1.64676
Iteration: 10, Rotator magnitude: 1.64676

Note that approaches 0, and approaches because

.

y_n = yf(end)

y_n =

-0.0018

x_n = xf(end)

3-74

Calculate Fixed-Point Arctangent

x_n =

1.6468

figno = 1;
fidemo.fixpt_atan2_demo_plot(figno, xf, yf) %Vectoring Mode CORDIC Iteratio

figno = figno + 1; %Cumulative Angle and Rotator Magnitude Through Iteratio
fidemo.fixpt_atan2_demo_plot(figno,Niter, theta, angleAccumulator, rotatorM

3-75

3 Fixed-Point Topics

Performing Overall Error Analysis of the CORDIC Algorithm

The overall error consists of two parts:

1 The algorithmic error that results from the CORDIC rotation angle being
represented by a finite number of basic angles.

2 The quantization or rounding error that results from the finite precision
representation of the angle lookup table, and from the finite precision
arithmetic used in fixed-point operations.

Calculate the CORDIC Algorithmic Error

theta = (-178:2:180)*pi/180; % angle in radians
inXflt = cos(theta); % generates input vector
inYflt = sin(theta);
Niter = 12; % total number of iterations
zflt = cordicatan2(inYflt, inXflt, Niter); % floating-point results

3-76

Calculate Fixed-Point Arctangent

Calculate the maximum magnitude of the CORDIC algorithmic error by
comparing the CORDIC computation to the builtin atan2 function.

format long
cordic_algErr_real_world_value = max(abs((atan2(inYflt, inXflt) - zflt)))

cordic_algErr_real_world_value =

4.753112306290497e-04

The log base 2 error is related to the number of iterations. In this example,
we use 12 iterations (i.e., accurate to 11 binary digits), so the magnitude
of the error is less than

cordic_algErr_bits = log2(cordic_algErr_real_world_value)

cordic_algErr_bits =

-11.038839889583048

Relationship Between Number of Iterations and Precision

Once the quantization error dominates the overall error, i.e., the quantization
error is greater than the algorithmic error, increasing the total number of
iterations won’t significantly decrease the overall error of the fixed-point
CORDIC algorithm. You should pick your fraction lengths and total number
of iterations to ensure that the quantization error is smaller than the
algorithmic error. In the CORDIC algorithm, the precision increases by one
bit every iteration. Thus, there is no reason to pick a number of iterations
greater than the precision of the input data.

Another way to look at the relationship between the number of iterations
and the precision is in the right-shift step of the algorithm. For example, on
the counter-clockwise rotation

x(:) = x0 - bitsra(y,i);

3-77

3 Fixed-Point Topics

y(:) = y + bitsra(x0,i);

if i is equal to the word length of y and x0, then bitsra(y,i) and
bitsra(x0,i) shift all the way to zero and do not contribute anything to
the next step.

To measure the error from the fixed-point algorithm, and not the differences
in input values, compute the floating-point reference with the same inputs as
the fixed-point CORDIC algorithm.

inXfix = sfi(inXflt, 16, 14);
inYfix = sfi(inYflt, 16, 14);
zref = atan2(double(inYfix), double(inXfix));
zfix8 = cordicatan2(inYfix, inXfix, 8);
zfix10 = cordicatan2(inYfix, inXfix, 10);
zfix12 = cordicatan2(inYfix, inXfix, 12);
zfix14 = cordicatan2(inYfix, inXfix, 14);
zfix15 = cordicatan2(inYfix, inXfix, 15);
cordic_err = bsxfun(@minus,zref,double([zfix8;zfix10;zfix12;zfix14;zfix15])

The error depends on the number of iterations and the precision of the input
data. In the above example, the input data is in the range [-1, +1], and the
fraction length is 14. From the following tables showing the maximum error
at each iteration, and the figure showing the overall error of the CORDIC
algorithm, you can see that the error decreases by about 1 bit per iteration
until the precision of the data is reached.

iterations = [8, 10, 12, 14, 15];
max_cordicErr_real_world_value = max(abs(cordic_err'));
fprintf('Iterations: %2d, Max error in real-world-value: %g\n',...

[iterations; max_cordicErr_real_world_value]);

Iterations: 8, Max error in real-world-value: 0.00773633
Iterations: 10, Max error in real-world-value: 0.00187695
Iterations: 12, Max error in real-world-value: 0.000501175
Iterations: 14, Max error in real-world-value: 0.000244621
Iterations: 15, Max error in real-world-value: 0.000244621

max_cordicErr_bits = log2(max_cordicErr_real_world_value);
fprintf('Iterations: %2d, Max error in bits: %g\n',[iterations; max_cordicE

3-78

Calculate Fixed-Point Arctangent

Iterations: 8, Max error in bits: -7.01414
Iterations: 10, Max error in bits: -9.05739
Iterations: 12, Max error in bits: -10.9624
Iterations: 14, Max error in bits: -11.9972
Iterations: 15, Max error in bits: -11.9972

figno = figno + 1;
fidemo.fixpt_atan2_demo_plot(figno, theta, cordic_err)

Accelerating the Fixed-Point CORDICATAN2 Algorithm Using FIACCEL

You can generate a MEX function from MATLAB code using the MATLAB
fiaccel command. Typically, running a generated MEX function can improve
the simulation speed, although the actual speed improvement depends on
the simulation platform being used. The following example shows how to
accelerate the fixed-point cordicatan2 algorithm using fiaccel.

3-79

3 Fixed-Point Topics

The fiaccel function compiles the MATLAB code into a MEX function. This
step requires the creation of a temporary directory and write permissions
in that directory.

tempdirObj = fidemo.fiTempdir('fixpt_atan2_demo');

When you declare the number of iterations to be a constant (e.g., 12) using
coder.newtype('constant',12), the compiled angle lookup table will also
be constant, and thus won’t be computed at each iteration. Also, when you
call the compiled MEX file cordicatan2_mex, you will not need to give it the
input argument for the number of iterations. If you pass in the number of
iterations, the MEX function will error.

The data type of the input parameters determines whether the cordicatan2
function performs fixed-point or floating-point calculations. When MATLAB
generates code for this file, code is only generated for the specific data type.
For example, if the inputs are fixed point, only fixed-point code is generated.

inp = {inYfix, inXfix, coder.newtype('constant',12)}; % example inputs for
fiaccel('cordicatan2', '-o', 'cordicatan2_mex', '-args', inp)

First, calculate a vector of 4 quadrant atan2 by calling cordicatan2.

tstart = tic;
cordicatan2(inYfix,inXfix,Niter);
telapsed_Mcordicatan2 = toc(tstart);

Next, calculate a vector of 4 quadrant atan2 by calling the MEX-function
cordicatan2_mex

cordicatan2_mex(inYfix,inXfix); % load the MEX file
tstart = tic;
cordicatan2_mex(inYfix,inXfix);
telapsed_MEXcordicatan2 = toc(tstart);

Now, compare the speed. Type the following in the MATLAB command
window to see the speed improvement on your specific platform:

fiaccel_speedup = telapsed_Mcordicatan2/telapsed_MEXcordicatan2;

To clean up the temporary directory, run the following commands:

3-80

Calculate Fixed-Point Arctangent

clear cordicatan2_mex;
status = tempdirObj.cleanUp;

Calculating atan2(y,x) Using Chebyshev Polynomial Approximation

Polynomial approximation is a multiply-accumulate (MAC) centric algorithm.
It can be a good choice for DSP implementations of non-linear functions like
atan(x).

For a given degree of polynomial, and a given function f(x) = atan(x)
evaluated over the interval of [-1, +1], the polynomial approximation
theory tries to find the polynomial that minimizes the maximum value of

, where P(x) is the approximating polynomial. In general,
you can obtain polynomials very close to the optimal one by approximating
the given function in terms of Chebyshev polynomials and cutting off the
polynomial at the desired degree.

The approximation of arctangent over the interval of [-1, +1] using the
Chebyshev polynomial of the first kind is summarized in the following
formula:

where

Therefore, the 3rd order Chebyshev polynomial approximation is

3-81

3 Fixed-Point Topics

The 5th order Chebyshev polynomial approximation is

The 7th order Chebyshev polynomial approximation is

You can obtain four quadrant output through angle correction based on the
properties of the arctangent function.

Comparing the Algorithmic Error of the CORDIC and Polynomial Approximation
Algorithms

In general, higher degrees of polynomial approximation produce more
accurate final results. However, higher degrees of polynomial approximation
also increase the complexity of the algorithm and require more MAC
operations and more memory. To be consistent with the CORDIC algorithm
and the MATLAB atan2 function, the input arguments consist of both x and y
coordinates instead of the ratio y/x.

To eliminate quantization error, floating-point implementations of the
CORDIC and Chebyshev polynomial approximation algorithms are used in the
comparison below. An algorithmic error comparison reveals that increasing
the number of CORDIC iterations results in less error. It also reveals that
the CORDIC algorithm with 12 iterations provides a slightly better angle
estimation than the 5th order Chebyshev polynomial approximation. The
approximation error of the 3rd order Chebyshev Polynomial is about 8 times
larger than that of the 5th order Chebyshev polynomial. You should choose
the order or degree of the polynomial based on the required accuracy of the
angle estimation and the hardware constraints.

The coefficients of the Chebyshev polynomial approximation for atan(x)
are shown in ascending order of x.

constA3 = [0.970562748477141, -0.189514164974601]; % 3rd order
constA5 = [0.994949366116654,-0.287060635532652,0.078037176446441]; % 5th o
constA7 = [0.999133448222780 -0.320533292381664 0.144982490144465...

-0.038254464970299]; % 7th order

3-82

Calculate Fixed-Point Arctangent

theta = (-90:1:90)*pi/180; % angle in radians
inXflt = cos(theta);
inYflt = sin(theta);
zfltRef = atan2(inYflt, inXflt); % Ideal output from ATAN2 function
zfltp3 = fidemo.poly_atan2(inYflt,inXflt,3,constA3); % 3rd order polynomia
zfltp5 = fidemo.poly_atan2(inYflt,inXflt,5,constA5); % 5th order polynomia
zfltp7 = fidemo.poly_atan2(inYflt,inXflt,7,constA7); % 7th order polynomia
zflt8 = cordicatan2(inYflt, inXflt, 8); % CORDIC alg with 8 iterations
zflt12 = cordicatan2(inYflt, inXflt, 12); % CORDIC alg with 12 iterations

The maximum algorithmic error magnitude (or infinity norm of the
algorithmic error) for the CORDIC algorithm with 8 and 12 iterations is
shown below:

cordic_algErr = [zfltRef;zfltRef] - [zflt8;zflt12];
max_cordicAlgErr = max(abs(cordic_algErr'));
fprintf('Iterations: %2d, CORDIC algorithmic error in real-world-value: %g\

[[8,12]; max_cordicAlgErr(:)']);

Iterations: 8, CORDIC algorithmic error in real-world-value: 0.00772146
Iterations: 12, CORDIC algorithmic error in real-world-value: 0.000483258

The log base 2 error shows the number of binary digits of accuracy. The 12th
iteration of the CORDIC algorithm has an estimated angle accuracy of :

max_cordicAlgErr_bits = log2(max_cordicAlgErr);
fprintf('Iterations: %2d, CORDIC algorithmic error in bits: %g\n',...

[[8,12]; max_cordicAlgErr_bits(:)']);

Iterations: 8, CORDIC algorithmic error in bits: -7.01691
Iterations: 12, CORDIC algorithmic error in bits: -11.0149

The following code shows the magnitude of the maximum algorithmic error of
the polynomial approximation for orders 3, 5, and 7:

poly_algErr = [zfltRef;zfltRef;zfltRef] - [zfltp3;zfltp5;zfltp7];
max_polyAlgErr = max(abs(poly_algErr'));
fprintf('Order: %d, Polynomial approximation algorithmic error in real-worl

[3:2:7; max_polyAlgErr(:)']);

3-83

3 Fixed-Point Topics

Order: 3, Polynomial approximation algorithmic error in real-world-value: 0
Order: 5, Polynomial approximation algorithmic error in real-world-value: 0
Order: 7, Polynomial approximation algorithmic error in real-world-value: 9

The log base 2 error shows the number of binary digits of accuracy.

max_polyAlgErr_bits = log2(max_polyAlgErr);
fprintf('Order: %d, Polynomial approximation algorithmic error in bits: %g\

[3:2:7; max_polyAlgErr_bits(:)']);

Order: 3, Polynomial approximation algorithmic error in bits: -7.52843
Order: 5, Polynomial approximation algorithmic error in bits: -10.5235
Order: 7, Polynomial approximation algorithmic error in bits: -13.414

figno = figno + 1;
fidemo.fixpt_atan2_demo_plot(figno, theta, cordic_algErr, poly_algErr)

3-84

Calculate Fixed-Point Arctangent

Converting the Floating-Point Chebyshev Polynomial Approximation Algorithm
to Fixed Point

Assume the input and output word lengths are constrained to 16 bits by
the hardware, and the 5th order Chebyshev polynomial is used in the
approximation. Because the dynamic range of inputs x, y and y/x are all
within [-1, +1], you can avoid overflow by picking a signed fixed-point input
data type with a word length of 16 bits and a fraction length of 14 bits. The
coefficients of the polynomial are purely fractional and within (-1, +1), so
we can pick their data types as signed fixed point with a word length of 16
bits and a fraction length of 15 bits (best precision). The algorithm is robust
because is within [-1, +1], and the multiplication of the coefficients and

is within (-1, +1). Thus, the dynamic range will not grow, and due to
the pre-determined fixed-point data types, overflow is not expected.

Similar to the CORDIC algorithm, the four quadrant polynomial
approximation-based atan2 algorithm outputs estimated angles within
. Therefore, we can pick an output fraction length of 13 bits to avoid overflow
and provide a dynamic range of [-4, +3.9998779296875].

The basic floating-point Chebyshev polynomial approximation of arctangent
over the interval [-1, +1] is implemented as the chebyPoly_atan_fltpt local
function in the poly_atan2.m file.

function z = chebyPoly_atan_fltpt(y,x,N,constA,Tz,RoundingMethodStr)

tmp = y/x;
switch N

case 3
z = constA(1)*tmp + constA(2)*tmp^3;

case 5
z = constA(1)*tmp + constA(2)*tmp^3 + constA(3)*tmp^5;

case 7
z = constA(1)*tmp + constA(2)*tmp^3 + constA(3)*tmp^5 + constA(4

otherwise
disp('Supported order of Chebyshev polynomials are 3, 5 and 7');

end

3-85

3 Fixed-Point Topics

The basic fixed-point Chebyshev polynomial approximation of arctangent
over the interval [-1, +1] is implemented as the chebyPoly_atan_fixpt local
function in the poly_atan2.m file.

function z = chebyPoly_atan_fixpt(y,x,N,constA,Tz,RoundingMethodStr)

z = fi(0,'numerictype', Tz, 'RoundingMethod', RoundingMethodStr);
Tx = numerictype(x);
tmp = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);
tmp(:) = Tx.divide(y, x); % y/x;

tmp2 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);
tmp3 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);
tmp2(:) = tmp*tmp; % (y/x)^2
tmp3(:) = tmp2*tmp; % (y/x)^3

z(:) = constA(1)*tmp + constA(2)*tmp3; % for order N = 3

if (N == 5) || (N == 7)
tmp5 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodStr);
tmp5(:) = tmp3 * tmp2; % (y/x)^5
z(:) = z + constA(3)*tmp5; % for order N = 5

if N == 7
tmp7 = fi(0, 'numerictype',Tx, 'RoundingMethod', RoundingMethodS
tmp7(:) = tmp5 * tmp2; % (y/x)^7
z(:) = z + constA(4)*tmp7; %for order N = 7

end
end

The universal four quadrant atan2 calculation using Chebyshev polynomial
approximation is implemented in the poly_atan2.m file.

function z = poly_atan2(y,x,N,constA,Tz,RoundingMethodStr)

if nargin < 5
% floating-point algorithm
fhandle = @chebyPoly_atan_fltpt;
Tz = [];
RoundingMethodStr = [];
z = zeros(size(y));

else

3-86

Calculate Fixed-Point Arctangent

% fixed-point algorithm
fhandle = @chebyPoly_atan_fixpt;
%pre-allocate output
z = fi(zeros(size(y)), 'numerictype', Tz, 'RoundingMethod', Rounding

end

% Apply angle correction to obtain four quadrant output
for idx = 1:length(y)

% fist quadrant
if abs(x(idx)) >= abs(y(idx))

% (0, pi/4]
z(idx) = feval(fhandle, abs(y(idx)), abs(x(idx)), N, constA, Tz,

else
% (pi/4, pi/2)
z(idx) = pi/2 - feval(fhandle, abs(x(idx)), abs(y(idx)), N, const

end

if x(idx) < 0
% second and third quadrant
if y(idx) < 0

z(idx) = -pi + z(idx);
else

z(idx) = pi - z(idx);
end

else % fourth quadrant
if y(idx) < 0

z(idx) = -z(idx);
end

end
end

Performing the Overall Error Analysis of the Polynomial Approximation
Algorithm

Similar to the CORDIC algorithm, the overall error of the polynomial
approximation algorithm consists of two parts - the algorithmic error and the
quantization error. The algorithmic error of the polynomial approximation
algorithm was analyzed and compared to the algorithmic error of the CORDIC
algorithm in a previous section.

3-87

3 Fixed-Point Topics

Calculate the Quantization Error

Compute the quantization error by comparing the fixed-point polynomial
approximation to the floating-point polynomial approximation.

Quantize the inputs and coefficients with convergent rounding:

inXfix = fi(fi(inXflt, 1, 16, 14,'RoundingMethod','Convergent'),'fimath',[
inYfix = fi(fi(inYflt, 1, 16, 14,'RoundingMethod','Convergent'),'fimath',[
constAfix3 = fi(fi(constA3, 1, 16,'RoundingMethod','Convergent'),'fimath',[
constAfix5 = fi(fi(constA5, 1, 16,'RoundingMethod','Convergent'),'fimath',[
constAfix7 = fi(fi(constA7, 1, 16,'RoundingMethod','Convergent'),'fimath',[

Calculate the maximum magnitude of the quantization error using Floor
rounding:

ord = 3:2:7; % using 3rd, 5th, 7th order polynomials
Tz = numerictype(1, 16, 13); % output data type
zfix3p = fidemo.poly_atan2(inYfix,inXfix,ord(1),constAfix3,Tz,'Floor'); % 3
zfix5p = fidemo.poly_atan2(inYfix,inXfix,ord(2),constAfix5,Tz,'Floor'); % 5
zfix7p = fidemo.poly_atan2(inYfix,inXfix,ord(3),constAfix7,Tz,'Floor'); % 7
poly_quantErr = bsxfun(@minus, [zfltp3;zfltp5;zfltp7], double([zfix3p;zfix5
max_polyQuantErr_real_world_value = max(abs(poly_quantErr'));
max_polyQuantErr_bits = log2(max_polyQuantErr_real_world_value);
fprintf('PolyOrder: %2d, Quant error in bits: %g\n',...

[ord; max_polyQuantErr_bits]);

PolyOrder: 3, Quant error in bits: -12.7101
PolyOrder: 5, Quant error in bits: -12.325
PolyOrder: 7, Quant error in bits: -11.8416

Calculate the Overall Error

Compute the overall error by comparing the fixed-point polynomial
approximation to the builtin atan2 function. The ideal reference output
is zfltRef. The overall error of the 7th order polynomial approximation is
dominated by the quantization error, which is due to the finite precision of
the input data, coefficients and the rounding effects from the fixed-point
arithmetic operations.

3-88

Calculate Fixed-Point Arctangent

poly_err = bsxfun(@minus, zfltRef, double([zfix3p;zfix5p;zfix7p]));
max_polyErr_real_world_value = max(abs(poly_err'));
max_polyErr_bits = log2(max_polyErr_real_world_value);
fprintf('PolyOrder: %2d, Overall error in bits: %g\n',...

[ord; max_polyErr_bits]);

PolyOrder: 3, Overall error in bits: -7.51907
PolyOrder: 5, Overall error in bits: -10.2497
PolyOrder: 7, Overall error in bits: -11.5883

figno = figno + 1;
fidemo.fixpt_atan2_demo_plot(figno, theta, poly_err)

The Effect of Rounding Modes in Polynomial Approximation

Compared to the CORDIC algorithm with 12 iterations and a 13-bit fraction
length in the angle accumulator, the fifth order Chebyshev polynomial
approximation gives a similar order of quantization error. In the following

3-89

3 Fixed-Point Topics

example, Nearest, Round and Convergent rounding modes give smaller
quantization errors than the Floor rounding mode.

Maximum magnitude of the quantization error using Floor rounding

poly5_quantErrFloor = max(abs(poly_quantErr(2,:)));
poly5_quantErrFloor_bits = log2(poly5_quantErrFloor)

poly5_quantErrFloor_bits =

-12.324996933210334

For comparison, calculate the maximum magnitude of the quantization error
using Nearest rounding:

zfixp5n = fidemo.poly_atan2(inYfix,inXfix,5,constAfix5,Tz,'Nearest');
poly5_quantErrNearest = max(abs(zfltp5 - double(zfixp5n)));
poly5_quantErrNearest_bits = log2(poly5_quantErrNearest)
set(0, 'format', origFormat); % reset MATLAB output format

poly5_quantErrNearest_bits =

-13.175966487895451

Calculating atan2(y,x) Using Lookup Tables

There are many lookup table based approaches that may be used to implement
fixed-point argtangent approximations. The following is a low-cost approach
based on a single real-valued lookup table and simple nearest-neighbor linear
interpolation.

Single Lookup Table Based Approach

The atan2 method of the fi object in the Fixed-Point Toolbox approximates
the MATLAB builtin floating-point atan2 function, using a single lookup table
based approach with simple nearest-neighbor linear interpolation between

3-90

Calculate Fixed-Point Arctangent

values. This approach allows for a small real-valued lookup table and uses
simple arithmetic.

Using a single real-valued lookup table simplifies the index computation and
the overall arithmetic required to achieve very good accuracy of the results.
These simplifications yield a relatively high speed performance as well as
relatively low memory requirements.

Understanding the Lookup Table Based ATAN2 Implementation

Lookup Table Size and Accuracy

Two important design considerations of a lookup table are its size and its
accuracy. It is not possible to create a table for every possible input value.
It is also not possible to be perfectly accurate due to the quantization of the
lookup table values.

As a compromise, the atan2 method of the Fixed-Point Toolbox fi object uses
an 8-bit lookup table as part of its implementation. An 8-bit table is only
256 elements long, so it is small and efficient. Eight bits also corresponds
to the size of a byte or a word on many platforms. Used in conjunction
with linear interpolation, and 16-bit output (lookup table value) precision,
an 8-bit-addressable lookup table provides very good accuracy as well as
performance.

Overview of Algorithm Implementation

To better understand the Fixed-Point Toolbox implementation, first consider
the symmetry of the four-quadrant atan2(y,x) function. If you always
compute the arctangent in the first-octant of the x-y space (i.e., between
angles 0 and pi/4 radians), then you can perform octant correction on the
resulting angle for any y and x values.

As part of the pre-processing portion, the signs and relative magnitudes of
y and x are considered, and a division is performed. Based on the signs
and magnitudes of y and x, only one of the following values is computed:
y/x, x/y, -y/x, -x/y, -y/-x, -x/-y. The unsigned result that is guaranteed to
be non-negative and purely fractional is computed, based on the a priori
knowledge of the signs and magnitudes of y and x. An unsigned 16-bit
fractional fixed-point type is used for this value.

3-91

3 Fixed-Point Topics

The 8 most significant bits (MSBs) of the stored unsigned integer
representation of the purely-fractional unsigned fixed-point result is then
used to directly index an 8-bit (length-256) lookup table value containing
angle values between 0 and pi/4 radians. Two table lookups are performed,
one at the computed table index location lutValBelow, and one at the next
index location lutValAbove:

idxUint8MSBs = uint8(bitsliceget(idxUFIX16, 16, 9));
zeroBasedIdx = int16(idxUint8MSBs);
lutValBelow = FI_ATAN_LUT(zeroBasedIdx + 1);
lutValAbove = FI_ATAN_LUT(zeroBasedIdx + 2);

The remaining 8 least significant bits (LSBs) of idxUFIX16 are used to
interpolate between these two table values. The LSB values are treated as a
normalized scaling factor with 8-bit fractional data type rFracNT:

rFracNT = numerictype(0,8,8); % fractional remainder data type
idxFrac8LSBs = reinterpretcast(bitsliceget(idxUFIX16,8,1), rFracNT);
rFraction = idxFrac8LSBs;

The two lookup table values, with the remainder (rFraction) value, are used
to perform a simple nearest-neighbor linear interpolation. A real multiply
is used to determine the weighted difference between the two points. This
results in a simple calculation (equivalent to one product and two sums) to
obtain the interpolated fixed-point result:

temp = rFraction * (lutValAbove - lutValBelow);
rslt = lutValBelow + temp;

Finally, based on the original signs and relative magnitudes of y and x, the
output result is formed using simple octant-correction logic and arithmetic.
The first-octant [0, pi/4] angle value results are added or subtracted with
constants to form the octant-corrected angle outputs.

Computing Fixed-point Argtangent Using ATAN2

You can call the atan2 function directly using fixed-point or floating-point
inputs. The lookup table based algorithm is used for the fixed-point atan2
implementation:

zFxpLUT = atan2(inYfix,inXfix);

3-92

Calculate Fixed-Point Arctangent

Calculate the Overall Error

You can compute the overall error by comparing the fixed-point lookup table
based approximation to the builtin atan2 function. The ideal reference output
is zfltRef.

lut_err = bsxfun(@minus, zfltRef, double(zFxpLUT));
max_lutErr_real_world_value = max(abs(lut_err'));
max_lutErr_bits = log2(max_lutErr_real_world_value);
fprintf('Overall error in bits: %g\n', max_lutErr_bits);

Overall error in bits: -12.6743

figno = figno + 1;
fidemo.fixpt_atan2_demo_plot(figno, theta, lut_err)

Comparison of Overall Error Between the Fixed-Point Implementations

3-93

3 Fixed-Point Topics

As was done previously, you can compute the overall error by comparing
the fixed-point approximation(s) to the builtin atan2 function. The ideal
reference output is zfltRef.

zfixCDC15 = cordicatan2(inYfix, inXfix, 15);
cordic_15I_err = bsxfun(@minus, zfltRef, double(zfixCDC15));
poly_7p_err = bsxfun(@minus, zfltRef, double(zfix7p));
figno = figno + 1;
fidemo.fixpt_atan2_demo_plot(figno, theta, cordic_15I_err, poly_7p_err, lut

Comparing the Costs of the Fixed-Point Approximation Algorithms

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration

• 2 shifts per iteration

• 3 additions per iteration

3-94

Calculate Fixed-Point Arctangent

The N-th order fixed-point Chebyshev polynomial approximation algorithm
requires the following operations:

• 1 division

• (N+1) multiplications

• (N-1)/2 additions

The simplified single lookup table algorithm with nearest-neighbor linear
interpolatiom requires the following operations:

• 1 division

• 2 table lookups

• 1 multiplication

• 2 additions

In real world applications, selecting an algorithm for the fixed-point
arctangent calculation typically depends on the required accuracy, cost and
hardware constraints.

close all; % close all figure windows

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959,
pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on
Field programmable gate arrays, Feb. 22-24, 1998, pp191-200

3-95

3 Fixed-Point Topics

Compute Sine and Cosine Using CORDIC Rotation Kernel
This example shows how to compute sine and cosine using a CORDIC rotation
kernel in MATLAB. CORDIC-based algorithms are critical to many embedded
applications, including motor controls, navigation, signal processing, and
wireless communications.

Introduction

CORDIC is an acronym for COordinate Rotation DIgital Computer. The
Givens rotation-based CORDIC algorithm (see [1,2]) is one of the most
hardware efficient algorithms because it only requires iterative shift-add
operations. The CORDIC algorithm eliminates the need for explicit
multipliers, and is suitable for calculating a variety of functions, such as sine,
cosine, arcsine, arccosine, arctangent, vector magnitude, divide, square root,
hyperbolic and logarithmic functions.

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration

• 2 shifts per iteration

• 3 additions per iteration

CORDIC Kernel Algorithm Using the Rotation Computation Mode

You can use a CORDIC rotation computing mode algorithm to calculate sine
and cosine simultaneously, compute polar-to-cartesian conversions, and for
other operations. In the rotation mode, the vector magnitude and an angle
of rotation are known and the coordinate (X-Y) components are computed
after rotation.

The CORDIC rotation mode algorithm begins by initializing an angle
accumulator with the desired rotation angle. Next, the rotation decision at
each CORDIC iteration is done in a way that decreases the magnitude of the
residual angle accumulator. The rotation decision is based on the sign of the
residual angle in the angle accumulator after each iteration.

In rotation mode, the CORDIC equations are:

3-96

Compute Sine and Cosine Using CORDIC Rotation Kernel

where if , and otherwise;

, and is the total number of iterations.

This provides the following result as approaches :

Where:

.

Typically is chosen to be a large-enough constant value. Thus, may
be pre-computed.

In rotation mode, the CORDIC algorithm is limited to rotation angles between
and . To support angles outside of that range, quadrant correction

is often used.

Efficient MATLAB Implementation of a CORDIC Rotation Kernel Algorithm

A MATLAB code implementation example of the CORDIC Rotation Kernel
algorithm follows (for the case of scalar x, y, and z). This same code can be
used for both fixed-point and floating-point operation.

CORDIC Rotation Kernel

function [x, y, z] = cordic_rotation_kernel(x, y, z, inpLUT, n)

3-97

3 Fixed-Point Topics

% Perform CORDIC rotation kernel algorithm for N iterations.
xtmp = x;
ytmp = y;
for idx = 1:n

if z < 0
z(:) = accumpos(z, inpLUT(idx));
x(:) = accumpos(x, ytmp);
y(:) = accumneg(y, xtmp);

else
z(:) = accumneg(z, inpLUT(idx));
x(:) = accumneg(x, ytmp);
y(:) = accumpos(y, xtmp);

end
xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)
ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)

end

CORDIC-Based Sine and Cosine Computation Using Normalized Inputs

Sine and Cosine Computation Using the CORDIC Rotation Kernel

The judicious choice of initial values allows the CORDIC kernel rotation mode
algorithm to directly compute both sine and cosine simultaneously.

First, the following initialization steps are performed:

• The angle input look-up table inpLUT is set to atan(2 .^ -(0:N-1)).

• is set to the input argument value.

• is set to .

• is set to zero.

After iterations, these initial values lead to the following outputs as
approaches :

•

•

3-98

Compute Sine and Cosine Using CORDIC Rotation Kernel

Other rotation-kernel-based function approximations are possible via pre- and
post-processing and using other initial conditions (see [1,2]).

The CORDIC algorithm is usually run through a specified (constant) number
of iterations since ending the CORDIC iterations early would break pipelined
code, and the CORDIC gain would not be constant because would vary.

For very large values of , the CORDIC algorithm is guaranteed to converge,
but not always monotonically. You can typically achieve greater accuracy by
increasing the total number of iterations.

Example

Suppose that you have a rotation angle sensor (e.g. in a servo motor) that
uses formatted integer values to represent measured angles of rotation. Also
suppose that you have a 16-bit integer arithmetic unit that can perform
add, subtract, shift, and memory operations. With such a device, you could
implement the CORDIC rotation kernel to efficiently compute cosine and sine
(equivalently, cartesian X and Y coordinates) from the sensor angle values,
without the use of multiplies or large lookup tables.

sumWL = 16; % CORDIC sum word length
thNorm = -1.0:(2^-8):1.0; % Normalized [-1.0, 1.0] angle values
theta = fi(thNorm, 1, sumWL); % Fixed-point angle values (best precision)

z_NT = numerictype(theta); % Data type for Z
xyNT = numerictype(1, sumWL, sumWL-2); % Data type for X-Y
x_out = fi(zeros(size(theta)), xyNT); % X array pre-allocation
y_out = fi(zeros(size(theta)), xyNT); % Y array pre-allocation
z_out = fi(zeros(size(theta)), z_NT); % Z array pre-allocation

niters = 13; % Number of CORDIC iterations
inpLUT = fi(atan(2 .^ (-((0:(niters-1))'))) .* (2/pi), z_NT); % Normalized
AnGain = prod(sqrt(1+2.^(-2*(0:(niters-1))))); % CORDIC gain
inv_An = 1 / AnGain; % 1/A_n inverse of CORDIC gain

for idx = 1:length(theta)
% CORDIC rotation kernel iterations
[x_out(idx), y_out(idx), z_out(idx)] = ...

fidemo.cordic_rotation_kernel(...

3-99

3 Fixed-Point Topics

fi(inv_An, xyNT), fi(0, xyNT), theta(idx), inpLUT, niters);
end

% Plot the CORDIC-approximated sine and cosine values
figure;
subplot(411);
plot(thNorm, x_out);
axis([-1 1 -1 1]);
title('Normalized X Values from CORDIC Rotation Kernel Iterations');
subplot(412);
thetaRadians = pi/2 .* thNorm; % real-world range [-pi/2 pi/2] angle values
plot(thNorm, cos(thetaRadians) - double(x_out));
title('Error between MATLAB COS Reference Values and X Values');
subplot(413);
plot(thNorm, y_out);
axis([-1 1 -1 1]);
title('Normalized Y Values from CORDIC Rotation Kernel Iterations');
subplot(414);
plot(thNorm, sin(thetaRadians) - double(y_out));
title('Error between MATLAB SIN Reference Values and Y Values');

3-100

Compute Sine and Cosine Using CORDIC Rotation Kernel

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959,
pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on
Field programmable gate arrays, Feb. 22-24, 1998, pp191-200

3-101

3 Fixed-Point Topics

Perform QR Factorization Using CORDIC
This example shows how to write MATLAB code that works for both
floating-point and fixed-point data types. The algorithm used in this example
is the QR factorization implemented via CORDIC (Coordinate Rotation
Digital Computer).

A good way to write an algorithm intended for a fixed-point target is to write
it in MATLAB using builtin floating-point types so you can verify that the
algorithm works. When you refine the algorithm to work with fixed-point
types, then the best thing to do is to write it so that the same code continues
working with floating-point. That way, when you are debugging, then you
can switch the inputs back and forth between floating-point and fixed-point
types to determine if a difference in behavior is because of fixed-point effects
such as overflow and quantization versus an algorithmic difference. Even if
the algorithm is not well suited for a floating-point target (as is the case of
using CORDIC in the following example), it is still advantageous to have your
MATLAB code work with floating-point for debugging purposes.

In contrast, you may have a completely different strategy if your target is
floating point. For example, the QR algorithm is often done in floating-point
with Householder transformations and row or column pivoting. But in
fixed-point it is often more efficient to use CORDIC to apply Givens rotations
with no pivoting.

This example addresses the first case, where your target is fixed-point, and
you want an algorithm that is independent of data type because it is easier
to develop and debug.

In this example you will learn various coding methods that can be applied
across systems. The significant design patterns used in this example are
the following:

• Data Type Independence: the algorithm is written in such a way that
the MATLAB code is independent of data type, and will work equally
well for fixed-point, double-precision floating-point, and single-precision
floating-point.

• Overflow Prevention: method to guarantee not to overflow. This
demonstrates how to prevent overflows in fixed-point.

3-102

Perform QR Factorization Using CORDIC

• Solving Systems of Equations: method to use computational efficiency.
Narrow your code scope by isolating what you need to define.

The main part in this example is an implementation of the QR factorization in
fixed-point arithmetic using CORDIC for the Givens rotations. The algorithm
is written in such a way that the MATLAB code is independent of data type,
and will work equally well for fixed-point, double-precision floating-point,
and single-precision floating-point.

The QR factorization of M-by-N matrix A produces an M-by-N upper
triangular matrix R and an M-by-M orthogonal matrix Q such that A = Q*R.
A matrix is upper triangular if it has all zeros below the diagonal. An M-by-M
matrix Q is orthogonal if Q'*Q = eye (M), the identity matrix.

The QR factorization is widely used in least-squares problems, such as the
recursive least squares (RLS) algorithm used in adaptive filters.

The CORDIC algorithm is attractive for computing the QR algorithm in
fixed-point because you can apply orthogonal Givens rotations with CORDIC
using only shift and add operations.

Setup

So this example does not change your preferences or settings, we store the
original state here, and restore them at the end.

originalFormat = get(0, 'format'); format short
originalFipref = fipref; reset(fipref);
originalGlobalFimath = fimath; resetglobalfimath;

Defining the CORDIC QR Algorithm

The CORDIC QR algorithm is given in the following MATLAB function,
where A is an M-by-N real matrix, and niter is the number of CORDIC
iterations. Output Q is an M-by-M orthogonal matrix, and R is an M-by-N
upper-triangular matrix such that Q*R = A.

function [Q,R] = cordicqr(A,niter)
Kn = inverse_cordic_growth_constant(niter);
[m,n] = size(A);

3-103

3 Fixed-Point Topics

R = A;
Q = coder.nullcopy(repmat(A(:,1),1,m)); % Declare type and size of Q
Q(:) = eye(m); % Initialize Q
for j=1:n

for i=j+1:m
[R(j,j:end),R(i,j:end),Q(:,j),Q(:,i)] = ...

cordicgivens(R(j,j:end),R(i,j:end),Q(:,j),Q(:,i),niter,Kn);
end

end
end

This function was written to be independent of data type. It works equally
well with builtin floating-point types (double and single) and with the
fixed-point fi object.

One of the trickiest aspects of writing data-type independent code is to specify
data type and size for a new variable. In order to preserve data types without
having to explicitly specify them, the output R was set to be the same as
input A, like this:

R = A;

In addition to being data-type independent, this function was written in such
a way that MATLAB Coder™ will be able to generate efficient C code from
it. In MATLAB, you most often declare and initialize a variable in one step,
like this:

Q = eye(m)

However, Q=eye(m) would always produce Q as a double-precision floating
point variable. If A is fixed-point, then we want Q to be fixed-point; if A is
single, then we want Q to be single; etc.

Hence, you need to declare the type and size of Q in one step, and then
initialize it in a second step. This gives MATLAB Coder the information it
needs to create an efficient C program with the correct types and sizes. In
the finished code you initialize output Q to be an M-by-M identity matrix and
the same data type as A, like this:

Q = coder.nullcopy(repmat(A(:,1),1,m)); % Declare type and size of Q
Q(:) = eye(m); % Initialize Q

3-104

Perform QR Factorization Using CORDIC

The coder.nullcopy function declares the size and type of Q without
initializing it. The expansion of the first column of A with repmat won’t
appear in code generated by MATLAB; it is only used to specify the size. The
repmat function was used instead of A(:,1:m) because A may have more
rows than columns, which will be the case in a least-squares problem. You
have to be sure to always assign values to every element of an array when
you declare it with coder.nullcopy, because if you don’t then you will have
uninitialized memory.

You will notice this pattern of assignment again and again. This is another
key enabler of data-type independent code.

The heart of this function is applying orthogonal Givens rotations in-place
to the rows of R to zero out sub-diagonal elements, thus forming an
upper-triangular matrix. The same rotations are applied in-place to the
columns of the identity matrix, thus forming orthogonal Q. The Givens
rotations are applied using the cordicgivens function, as defined in the
next section. The rows of R and columns of Q are used as both input and
output to the cordicgivens function so that the computation is done in-place,
overwriting R and Q.

[R(j,j:end),R(i,j:end),Q(:,j),Q(:,i)] = ...
cordicgivens(R(j,j:end),R(i,j:end),Q(:,j),Q(:,i),niter,Kn);

Defining the CORDIC Givens Rotation

The cordicgivens function applies a Givens rotation by performing CORDIC
iterations to rows x=R(j,j:end), y=R(i,j:end) around the angle defined by
x(1)=R(j,j) and y(1)=R(i,j) where i>j, thus zeroing out R(i,j). The
same rotation is applied to columns u = Q(:,j) and v = Q(:,i), thus
forming the orthogonal matrix Q.

function [x,y,u,v] = cordicgivens(x,y,u,v,niter,Kn)
if x(1)<0

% Compensation for 3rd and 4th quadrants
x(:) = -x; u(:) = -u;
y(:) = -y; v(:) = -v;

end
for i=0:niter-1

x0 = x;

3-105

3 Fixed-Point Topics

u0 = u;
if y(1)<0

% Counter-clockwise rotation
% x and y form R, u and v form Q
x(:) = x - bitsra(y, i); u(:) = u - bitsra(v, i);
y(:) = y + bitsra(x0,i); v(:) = v + bitsra(u0,i);

else
% Clockwise rotation
% x and y form R, u and v form Q
x(:) = x + bitsra(y, i); u(:) = u + bitsra(v, i);
y(:) = y - bitsra(x0,i); v(:) = v - bitsra(u0,i);

end
end
% Set y(1) to exactly zero so R will be upper triangular without round of
% showing up in the lower triangle.
y(1) = 0;
% Normalize the CORDIC gain
x(:) = Kn * x; u(:) = Kn * u;
y(:) = Kn * y; v(:) = Kn * v;

end

The advantage of using CORDIC in fixed-point over the standard Givens
rotation is that CORDIC does not use square root or divide operations.
Only bit-shifts, addition, and subtraction are needed in the main loop, and
one scalar-vector multiply at the end to normalize the CORDIC gain. Also,
CORDIC rotations work well in pipelined architectures.

The bit shifts in each iteration are performed with the bit shift right
arithmetic (bitsra) function instead of bitshift, multiplication by 0.5, or
division by 2, because bitsra

• generates more efficient embedded code,

• works equally well with positive and negative numbers,

• works equally well with floating-point, fixed-point and integer types, and

• keeps this code independent of data type.

3-106

Perform QR Factorization Using CORDIC

It is worthwhile to note that there is a difference between sub-scripted
assignment (subsasgn) into a variable a(:) = b versus overwriting a
variable a = b. Sub-scripted assignment into a variable like this

x(:) = x + bitsra(y, i);

always preserves the type of the left-hand-side argument x. This is the
recommended programming style in fixed-point. For example fixed-point
types often grow their word length in a sum, which is governed by the SumMode
property of the fimath object, so that the right-hand-side x + bitsra(y,i)
can have a different data type than x.

If, instead, you overwrite the left-hand-side like this

x = x + bitsra(y, i);

then the left-hand-side x takes on the type of the right-hand-side sum. This
programming style leads to changing the data type of x in fixed-point code,
and is discouraged.

Defining the Inverse CORDIC Growth Constant

This function returns the inverse of the CORDIC growth factor after niter
iterations. It is needed because CORDIC rotations grow the values by a factor
of approximately 1.6468, depending on the number of iterations, so the gain
is normalized in the last step of cordicgivens by a multiplication by the
inverse Kn = 1/1.6468 = 0.60725.

function Kn = inverse_cordic_growth_constant(niter)
Kn = 1/prod(sqrt(1+2.^(-2*(0:double(niter)-1))));

end

Exploring CORDIC Growth as a Function of Number of Iterations

The function for CORDIC growth is defined as

growth = prod(sqrt(1+2.^(-2*(0:double(niter)-1))))

and the inverse is

inverse_growth = 1 ./ growth

3-107

3 Fixed-Point Topics

Growth is a function of the number of iterations niter, and quickly converges
to approximately 1.6468, and the inverse converges to approximately 0.60725.
You can see in the following table that the difference from one iteration to the
next ceases to change after 27 iterations. This is because the calculation hit
the limit of precision in double floating-point at 27 iterations.

niter growth diff(growth) 1./growth diff(1.
0 1.000000000000000 0 1.000000000000000
1 1.414213562373095 0.414213562373095 0.707106781186547 -0.292893
2 1.581138830084190 0.166925267711095 0.632455532033676 -0.074651
3 1.629800601300662 0.048661771216473 0.613571991077896 -0.018883
4 1.642484065752237 0.012683464451575 0.608833912517752 -0.004738
5 1.645688915757255 0.003204850005018 0.607648256256168 -0.001185
6 1.646492278712479 0.000803362955224 0.607351770141296 -0.000296
7 1.646693254273644 0.000200975561165 0.607277644093526 -0.000074
8 1.646743506596901 0.000050252323257 0.607259112298893 -0.000018
9 1.646756070204878 0.000012563607978 0.607254479332562 -0.000004

10 1.646759211139822 0.000003140934944 0.607253321089875 -0.000001
11 1.646759996375617 0.000000785235795 0.607253031529134 -0.000000
12 1.646760192684695 0.000000196309077 0.607252959138945 -0.000000
13 1.646760241761972 0.000000049077277 0.607252941041397 -0.000000
14 1.646760254031292 0.000000012269320 0.607252936517010 -0.000000
15 1.646760257098622 0.000000003067330 0.607252935385914 -0.000000
16 1.646760257865455 0.000000000766833 0.607252935103139 -0.000000
17 1.646760258057163 0.000000000191708 0.607252935032446 -0.000000
18 1.646760258105090 0.000000000047927 0.607252935014772 -0.000000
19 1.646760258117072 0.000000000011982 0.607252935010354 -0.000000
20 1.646760258120067 0.000000000002995 0.607252935009249 -0.000000
21 1.646760258120816 0.000000000000749 0.607252935008973 -0.000000
22 1.646760258121003 0.000000000000187 0.607252935008904 -0.000000
23 1.646760258121050 0.000000000000047 0.607252935008887 -0.000000
24 1.646760258121062 0.000000000000012 0.607252935008883 -0.000000
25 1.646760258121065 0.000000000000003 0.607252935008882 -0.000000
26 1.646760258121065 0.000000000000001 0.607252935008881 -0.000000
27 1.646760258121065 0 0.607252935008881
28 1.646760258121065 0 0.607252935008881
29 1.646760258121065 0 0.607252935008881
30 1.646760258121065 0 0.607252935008881
31 1.646760258121065 0 0.607252935008881

3-108

Perform QR Factorization Using CORDIC

32 1.646760258121065 0 0.607252935008881

Comparing CORDIC to the Standard Givens Rotation

The cordicgivens function is numerically equivalent to the following
standard Givens rotation algorithm from Golub & Van Loan, Matrix
Computations. In the cordicqr function, if you replace the call to
cordicgivens with a call to givensrotation, then you will have the standard
Givens QR algorithm.

function [x,y,u,v] = givensrotation(x,y,u,v)
a = x(1); b = y(1);
if b==0

% No rotation necessary. c = 1; s = 0;
return;

else
if abs(b) > abs(a)

t = -a/b; s = 1/sqrt(1+t^2); c = s*t;
else

t = -b/a; c = 1/sqrt(1+t^2); s = c*t;
end

end
x0 = x; u0 = u;
% x and y form R, u and v form Q
x(:) = c*x0 - s*y; u(:) = c*u0 - s*v;
y(:) = s*x0 + c*y; v(:) = s*u0 + c*v;

end

The givensrotation function uses division and square root, which are
expensive in fixed-point, but good for floating-point algorithms.

Example of CORDIC Rotations

Here is a 3-by-3 example that follows the CORDIC rotations through each
step of the algorithm. The algorithm uses orthogonal rotations to zero out
the subdiagonal elements of R using the diagonal elements as pivots. The
same rotations are applied to the identity matrix, thus producing orthogonal
Q such that Q*R = A.

Let A be a random 3-by-3 matrix, and initialize R = A, and Q = eye(3).

3-109

3 Fixed-Point Topics

R = A = [-0.8201 0.3573 -0.0100
-0.7766 -0.0096 -0.7048
-0.7274 -0.6206 -0.8901]

Q = [1 0 0
0 1 0
0 0 1]

The first rotation is about the first and second row of R and the first and
second column of Q. Element R(1,1) is the pivot and R(2,1) rotates to 0.

R before the first rotation R after the first rotation
x [-0.8201 0.3573 -0.0100] -> x [1.1294 -0.2528 0.4918]
y [-0.7766 -0.0096 -0.7048] -> y [0 0.2527 0.5049]

-0.7274 -0.6206 -0.8901 -0.7274 -0.6206 -0.8901

Q before the first rotation Q after the first rotation
u v u v

[1] [0] 0 [-0.7261] [0.6876] 0
[0] [1] 0 -> [-0.6876] [-0.7261] 0
[0] [0] 1 [0] [0] 1

In the following plot, you can see the growth in x in each of the CORDIC
iterations. The growth is factored out at the last step by multiplying it by Kn
= 0.60725. You can see that y(1) iterates to 0. Initially, the point [x(1),
y(1)] is in the third quadrant, and is reflected into the first quadrant before
the start of the CORDIC iterations.

3-110

Perform QR Factorization Using CORDIC

The second rotation is about the first and third row of R and the first and
third column of Q. Element R(1,1) is the pivot and R(3,1) rotates to 0.

R before the second rotation R after the second rotation
x [1.1294 -0.2528 0.4918] -> x [1.3434 0.1235 0.8954]

0 0.2527 0.5049 0 0.2527 0.5049
y [-0.7274] -0.6206 -0.8901 -> y [0 -0.6586 -0.4820]

Q before the second rotation Q after the second rotation
u v u v

[-0.7261] 0.6876 [0] [-0.6105] 0.6876 [-0.3932]
[-0.6876] -0.7261 [0] -> [-0.5781] -0.7261 [-0.3723]
[0] 0 [1] [-0.5415] 0 [0.8407]

3-111

3 Fixed-Point Topics

The third rotation is about the second and third row of R and the second and
third column of Q. Element R(2,2) is the pivot and R(3,2) rotates to 0.

R before the third rotation R after the third rotation
1.3434 0.1235 0.8954 1.3434 0.1235 0.8954

x 0 [0.2527 0.5049] -> x 0 [0.7054 0.6308]
y 0 [-0.6586 -0.4820] -> y 0 [0 0.2987]

Q before the third rotation Q after the third rotation
u v u v

-0.6105 [0.6876] [-0.3932] -0.6105 [0.6134] [0.5011]
-0.5781 [-0.7261] [-0.3723] -> -0.5781 [0.0875] [-0.8113]
-0.5415 [0] [0.8407] -0.5415 [-0.7849] [0.3011]

3-112

Perform QR Factorization Using CORDIC

This completes the QR factorization. R is upper triangular, and Q is
orthogonal.

R =
1.3434 0.1235 0.8954

0 0.7054 0.6308
0 0 0.2987

Q =
-0.6105 0.6134 0.5011
-0.5781 0.0875 -0.8113
-0.5415 -0.7849 0.3011

You can verify that Q is within roundoff error of being orthogonal by
multiplying and seeing that it is close to the identity matrix.

3-113

3 Fixed-Point Topics

Q*Q' = 1.0000 0.0000 0.0000
0.0000 1.0000 0
0.0000 0 1.0000

Q'*Q = 1.0000 0.0000 -0.0000
0.0000 1.0000 -0.0000

-0.0000 -0.0000 1.0000

You can see the error difference by subtracting the identity matrix.

Q*Q' - eye(size(Q)) = 0 2.7756e-16 3.0531e-16
2.7756e-16 4.4409e-16 0
3.0531e-16 0 6.6613e-16

You can verify that Q*R is close to A by subtracting to see the error difference.

Q*R - A = -3.7802e-11 -7.2325e-13 -2.7756e-17
-3.0512e-10 1.1708e-12 -4.4409e-16
3.6836e-10 -4.3487e-13 -7.7716e-16

Determining the Optimal Output Type of Q for Fixed Word Length

Since Q is orthogonal, you know that all of its values are between -1 and +1.
In floating-point, there is no decision about the type of Q: it should be the
same floating-point type as A. However, in fixed-point, you can do better than
making Q have the identical fixed-point type as A. For example, if A has word
length 16 and fraction length 8, and if we make Q also have word length 16
and fraction length 8, then you force Q to be less accurate than it could be and
waste the upper half of the fixed-point range.

The best type for Q is to make it have full range of its possible outputs, plus
accommodate the 1.6468 CORDIC growth factor in intermediate calculations.
Therefore, assuming that the word length of Q is the same as the word length
of input A, then the best fraction length for Q is 2 bits less than the word
length (one bit for 1.6468 and one bit for the sign).

Hence, our initialization of Q in cordicqr can be improved like this.

if isfi(A) && (isfixed(A) || isscaleddouble(A))
Q = fi(one*eye(m), get(A,'NumericType'), ...

'FractionLength',get(A,'WordLength')-2);

3-114

Perform QR Factorization Using CORDIC

else
Q = coder.nullcopy(repmat(A(:,1),1,m));
Q(:) = eye(m);

end

A slight disadvantage is that this section of code is dependent on data type.
However, you gain a major advantage by picking the optimal type for Q, and
the main algorithm is still independent of data type. You can do this kind of
input parsing in the beginning of a function and leave the main algorithm
data-type independent.

Preventing Overflow in Fixed Point R

This section describes how to determine a fixed-point output type for R in
order to prevent overflow. In order to pick an output type, you need to know
how much the magnitude of the values of R will grow.

Given real matrix A and its QR factorization computed by Givens rotations
without pivoting, an upper-bound on the magnitude of the elements of R
is the square-root of the number of rows of A times the magnitude of the
largest element in A. Furthermore, this growth will never be greater during
an intermediate computation. In other words, let [m,n]=size(A), and
[Q,R]=givensqr(A). Then

max(abs(R(:))) <= sqrt(m) * max(abs(A(:))).

This is true because the each element of R is formed from orthogonal rotations
from its corresponding column in A, so the largest that any element R(i,j)
can get is if all of the elements of its corresponding column A(:,j) were
rotated to a single value. In other words, the largest possible value will be
bounded by the 2-norm of A(:,j). Since the 2-norm of A(:,j) is equal to the
square-root of the sum of the squares of the m elements, and each element is
less-than-or-equal-to the largest element of A, then

norm(A(:,j)) <= sqrt(m) * max(abs(A(:))).

That is, for all j

norm(A(:,j)) = sqrt(A(1,j)^2 + A(2,j)^2 + ... + A(m,j)^2)
<= sqrt(m * max(abs(A(:)))^2)
= sqrt(m) * max(abs(A(:))).

3-115

3 Fixed-Point Topics

and so for all i,j

abs(R(i,j)) <= norm(A(:,j)) <= sqrt(m) * max(abs(A(:))).

Hence, it is also true for the largest element of R

max(abs(R(:))) <= sqrt(m) * max(abs(A(:))).

This becomes useful in fixed-point where the elements of A are often very
close to the maximum value attainable by the data type, so we can set a tight
upper bound without knowing the values of A. This is important because
we want to set an output type for R with a minimum number of bits, only
knowing the upper bound of the data type of A. You can use fi method
upperbound to get this value.

Therefore, for all i,j

abs(R(i,j)) <= sqrt(m) * upperbound(A)

Note that sqrt(m)*upperbound(A) is also an upper bound for the elements
of A:

abs(A(i,j)) <= upperbound(A) <= sqrt(m)*upperbound(A)

Therefore, when picking fixed-point data types, sqrt(m)*upperbound(A) is
an upper bound that will work for both A and R.

Attaining the maximum is easy and common. The maximum will occur when
all elements get rotated into a single element, like the following matrix with
orthogonal columns:

A = [7 -7 7 7
7 7 -7 7
7 -7 -7 -7
7 7 7 -7];

Its maximum value is 7 and its number of rows is m=4, so we expect that
the maximum value in R will be bounded by max(abs(A(:)))*sqrt(m) =
7*sqrt(4) = 14. Since A in this example is orthogonal, each column gets
rotated to the max value on the diagonal.

niter = 52;

3-116

Perform QR Factorization Using CORDIC

[Q,R] = cordicqr(A,niter)

Q =

0.5000 -0.5000 0.5000 0.5000
0.5000 0.5000 -0.5000 0.5000
0.5000 -0.5000 -0.5000 -0.5000
0.5000 0.5000 0.5000 -0.5000

R =

14.0000 0.0000 -0.0000 -0.0000
0 14.0000 -0.0000 0.0000
0 0 14.0000 0.0000
0 0 0 14.0000

Another simple example of attaining maximum growth is a matrix that has
all identical elements, like a matrix of all ones. A matrix of ones will get
rotated into 1*sqrt(m) in the first row and zeros elsewhere. For example,
this 9-by-5 matrix will have all 1*sqrt(9)=3 in the first row of R.

m = 9; n = 5;
A = ones(m,n)
niter = 52;
[Q,R] = cordicqr(A,niter)

A =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

3-117

3 Fixed-Point Topics

1 1 1 1 1

Q =

Columns 1 through 7

0.3333 0.5567 -0.6784 0.3035 -0.1237 0.0503 0.0158
0.3333 0.0296 0.2498 -0.1702 -0.6336 0.1229 -0.3012
0.3333 0.2401 0.0562 -0.3918 0.4927 0.2048 -0.5395
0.3333 0.0003 0.0952 -0.1857 0.2148 0.4923 0.7080
0.3333 0.1138 0.0664 -0.2263 0.1293 -0.8348 0.2510
0.3333 -0.3973 -0.0143 0.3271 0.4132 -0.0354 -0.2165
0.3333 0.1808 0.3538 -0.1012 -0.2195 0 0.0824
0.3333 -0.6500 -0.4688 -0.2380 -0.2400 0 0
0.3333 -0.0740 0.3400 0.6825 -0.0331 0 0

Columns 8 through 9

0.0056 -0.0921
-0.5069 -0.1799
0.0359 0.3122

-0.2351 -0.0175
-0.2001 0.0610
-0.0939 -0.6294
0.7646 -0.2849
0.2300 0.2820

0 0.5485

R =

3.0000 3.0000 3.0000 3.0000 3.0000
0 0.0000 0.0000 0.0000 0.0000
0 0 0.0000 0.0000 0.0000
0 0 0 0.0000 0.0000
0 0 0 0 0.0000
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3-118

Perform QR Factorization Using CORDIC

0 0 0 0 0

As in the cordicqr function, the Givens QR algorithm is often written by
overwriting A in-place with R, so being able to cast A into R’s data type at the
beginning of the algorithm is convenient.

In addition, if you compute the Givens rotations with CORDIC, there is a
growth-factor that converges quickly to approximately 1.6468. This growth
factor gets normalized out after each Givens rotation, but you need to
accommodate it in the intermediate calculations. Therefore, the number of
additional bits that are required including the Givens and CORDIC growth
are log2(1.6468* sqrt(m)). The additional bits of head-room can be added
either by increasing the word length, or decreasing the fraction length.

A benefit of increasing the word length is that it allows for the maximum
possible precision for a given word length. A disadvantage is that the optimal
word length may not correspond to a native type on your processor (e.g.
increasing from 16 to 18 bits), or you may have to increase to the next larger
native word size which could be quite large (e.g. increasing from 16 to 32 bits,
when you only needed 18).

A benefit of decreasing fraction length is that you can do the computation
in-place in the native word size of A. A disadvantage is that you lose precision.

Another option is to pre-scale the input by right-shifting. This is equivalent to
decreasing the fraction length, with the additional disadvantage of changing
the scaling of your problem. However, this may be an attractive option to you
if you prefer to only work in fractional arithmetic or integer arithmetic.

Example of Fixed Point Growth in R

If you have a fixed-point input matrix A, you can define fixed-point output R
with the growth defined in the previous section.

Start with a random matrix X.

X = [0.0513 -0.2097 0.9492 0.2614
0.8261 0.6252 0.3071 -0.9415
1.5270 0.1832 0.1352 -0.1623

3-119

3 Fixed-Point Topics

0.4669 -1.0298 0.5152 -0.1461];

Create a fixed-point A from X.

A = sfi(X)

A =

0.0513 -0.2097 0.9492 0.2614
0.8261 0.6252 0.3071 -0.9415
1.5270 0.1832 0.1352 -0.1623
0.4669 -1.0298 0.5152 -0.1461

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 14

m = size(A,1)

m =

4

The growth factor is 1.6468 times the square-root of the number of rows of A.
The bit growth is the next integer above the base-2 logarithm of the growth.

bit_growth = ceil(log2(cordic_growth_constant * sqrt(m)))

bit_growth =

2

Initialize R with the same values as A, and a word length increased by the bit
growth.

3-120

Perform QR Factorization Using CORDIC

R = sfi(A, get(A,'WordLength')+bit_growth, get(A,'FractionLength'))

R =

0.0513 -0.2097 0.9492 0.2614
0.8261 0.6252 0.3071 -0.9415
1.5270 0.1832 0.1352 -0.1623
0.4669 -1.0298 0.5152 -0.1461

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 14

Use R as input and overwrite it.

niter = get(R,'WordLength') - 1
[Q,R] = cordicqr(R, niter)

niter =

17

Q =

0.0284 -0.1753 0.9110 0.3723
0.4594 0.4470 0.3507 -0.6828
0.8490 0.0320 -0.2169 0.4808
0.2596 -0.8766 -0.0112 -0.4050

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 16

R =

3-121

3 Fixed-Point Topics

1.7989 0.1694 0.4166 -0.6008
0 1.2251 -0.4764 -0.3438
0 0 0.9375 -0.0555
0 0 0 0.7214

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 14

Verify that Q*Q' is near the identity matrix.

double(Q)*double(Q')

ans =

1.0000 -0.0001 0.0000 0.0000
-0.0001 1.0001 0.0000 -0.0000
0.0000 0.0000 1.0000 -0.0000
0.0000 -0.0000 -0.0000 1.0000

Verify that Q*R - A is small relative to the precision of A.

err = double(Q)*double(R) - double(A)

err =

1.0e-03 *

-0.1048 -0.2355 0.1829 -0.2146
0.3472 0.2949 0.0260 -0.2570
0.2776 -0.1740 -0.1007 0.0966
0.0138 -0.1558 0.0417 -0.0362

Increasing Precision in R

3-122

Perform QR Factorization Using CORDIC

The previous section showed you how to prevent overflow in R while
maintaining the precision of A. If you leave the fraction length of R the
same as A, then R cannot have more precision than A, and your precision
requirements may be such that the precision of R must be greater.

An extreme example of this is to define a matrix with an integer fixed-point
type (i.e. fraction length is zero). Let matrix X have elements that are the full
range for signed 8 bit integers, between -128 and +127.

X = [-128 -128 -128 127
-128 127 127 -128
127 127 127 127
127 127 -128 -128];

Define fixed-point A to be equivalent to an 8-bit integer.

A = sfi(X,8,0)

A =

-128 -128 -128 127
-128 127 127 -128
127 127 127 127
127 127 -128 -128

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 0

m = size(A,1)

m =

4

3-123

3 Fixed-Point Topics

The necessary growth is 1.6468 times the square-root of the number of rows
of A.

bit_growth = ceil(log2(cordic_growth_constant*sqrt(m)))

bit_growth =

2

Initialize R with the same values as A, and allow for bit growth like you did in
the previous section.

R = sfi(A, get(A,'WordLength')+bit_growth, get(A,'FractionLength'))

R =

-128 -128 -128 127
-128 127 127 -128
127 127 127 127
127 127 -128 -128

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 10

FractionLength: 0

Compute the QR factorization, overwriting R.

niter = get(R,'WordLength') - 1;
[Q,R] = cordicqr(R, niter)

Q =

-0.5039 -0.2930 -0.4063 -0.6914
-0.5039 0.8750 0.0039 0.0078
0.5000 0.2930 0.3984 -0.7148

3-124

Perform QR Factorization Using CORDIC

0.4922 0.2930 -0.8203 0.0039

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 10

FractionLength: 8

R =

257 126 -1 -1
0 225 151 -148
0 0 211 104
0 0 0 -180

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 10

FractionLength: 0

Notice that R is returned with integer values because you left the fraction
length of R at 0, the same as the fraction length of A.

The scaling of the least-significant bit (LSB) of A is 1, and you can see that
the error is proportional to the LSB.

err = double(Q)*double(R)-double(A)

err =

-1.5039 -1.4102 -1.4531 -0.9336
-1.5039 6.3828 6.4531 -1.9961
1.5000 1.9180 0.8086 -0.7500

-0.5078 0.9336 -1.3398 -1.8672

You can increase the precision in the QR factorization by increasing the
fraction length. In this example, you needed 10 bits for the integer part (8 bits
to start with, plus 2 bits growth), so when you increase the fraction length
you still need to keep the 10 bits in the integer part. For example, you can

3-125

3 Fixed-Point Topics

increase the word length to 32 and set the fraction length to 22, which leaves
10 bits in the integer part.

R = sfi(A, 32, 22)

R =

-128 -128 -128 127
-128 127 127 -128
127 127 127 127
127 127 -128 -128

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 22

niter = get(R,'WordLength') - 1;
[Q,R] = cordicqr(R, niter)

Q =

-0.5020 -0.2913 -0.4088 -0.7043
-0.5020 0.8649 0.0000 0.0000
0.4980 0.2890 0.4056 -0.7099
0.4980 0.2890 -0.8176 0.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 30

R =

255.0020 127.0029 0.0039 0.0039
0 220.5476 146.8413 -147.9930
0 0 208.4793 104.2429
0 0 0 -179.6037

3-126

Perform QR Factorization Using CORDIC

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 22

Now you can see fractional parts in R, and Q*R-A is small.

err = double(Q)*double(R)-double(A)

err =

1.0e-05 *

-0.1234 -0.0014 -0.0845 0.0267
-0.1234 0.2574 0.1260 -0.1094
0.0720 0.0289 -0.0400 -0.0684
0.0957 0.0818 -0.1034 0.0095

The number of bits you choose for fraction length will depend on the precision
requirements for your particular algorithm.

Picking Default Number of Iterations

The number of iterations is dependent on the desired precision, but limited
by the word length of A. With each iteration, the values are right-shifted one
bit. After the last bit gets shifted off and the value becomes 0, then there is
no additional value in continuing to rotate. Hence, the most precision will be
attained by choosing niter to be one less than the word length.

For floating-point, the number of iterations is bounded by the size of the
mantissa. In double, 52 iterations is the most you can do to continue adding
to something with the same exponent. In single, it is 23. See the reference
page for eps for more information about floating-point accuracy.

Thus, we can make our code more usable by not requiring the number of
iterations to be input, and assuming that we want the most precision possible
by changing cordicqr to use this default for niter.

3-127

3 Fixed-Point Topics

function [Q,R] = cordicqr(A,varargin)
if nargin>=2 && ~isempty(varargin{1})

niter = varargin{1};
elseif isa(A,'double') || isfi(A) && isdouble(A)

niter = 52;
elseif isa(A,'single') || isfi(A) && issingle(A)

niter = single(23);
elseif isfi(A)

niter = int32(get(A,'WordLength') - 1);
else

assert(0,'First input must be double, single, or fi.');
end

A disadvantage of doing this is that this makes a section of our code dependent
on data type. However, an advantage is that the function is much more
convenient to use because you don’t have to specify niter if you don’t want
to, and the main algorithm is still data-type independent. Similar to picking
an optimal output type for Q, you can do this kind of input parsing in the
beginning of a function and leave the main algorithm data-type independent.

Here is an example from a previous section, without needing to specify an
optimal niter.

A = [7 -7 7 7
7 7 -7 7
7 -7 -7 -7
7 7 7 -7];

[Q,R] = cordicqr(A)

Q =

0.5000 -0.5000 0.5000 0.5000
0.5000 0.5000 -0.5000 0.5000
0.5000 -0.5000 -0.5000 -0.5000
0.5000 0.5000 0.5000 -0.5000

R =

3-128

Perform QR Factorization Using CORDIC

14.0000 0.0000 -0.0000 -0.0000
0 14.0000 -0.0000 0.0000
0 0 14.0000 0.0000
0 0 0 14.0000

Example: QR Factorization Not Unique

When you compare the results from cordicqr and the QR function in
MATLAB, you will notice that the QR factorization is not unique. It is only
important that Q is orthogonal, R is upper triangular, and Q*R - A is small.

Here is a simple example that shows the difference.

m = 3;
A = ones(m)

A =

1 1 1
1 1 1
1 1 1

The built-in QR function in MATLAB uses a different algorithm and produces:

[Q0,R0] = qr(A)

Q0 =

-0.5774 -0.5774 -0.5774
-0.5774 0.7887 -0.2113
-0.5774 -0.2113 0.7887

R0 =

-1.7321 -1.7321 -1.7321

3-129

3 Fixed-Point Topics

0 0 0
0 0 0

And the cordicqr function produces:

[Q,R] = cordicqr(A)

Q =

0.5774 0.7495 0.3240
0.5774 -0.6553 0.4871
0.5774 -0.0942 -0.8110

R =

1.7321 1.7321 1.7321
0 0.0000 0.0000
0 0 -0.0000

Notice that the elements of Q from function cordicqr are different from Q0
from built-in QR. However, both results satisfy the requirement that Q is
orthogonal:

Q0*Q0'

ans =

1.0000 0.0000 0
0.0000 1.0000 0

0 0 1.0000

Q*Q'

3-130

Perform QR Factorization Using CORDIC

ans =

1.0000 0.0000 0.0000
0.0000 1.0000 -0.0000
0.0000 -0.0000 1.0000

And they both satisfy the requirement that Q*R - A is small:

Q0*R0 - A

ans =

1.0e-15 *

-0.1110 -0.1110 -0.1110
-0.1110 -0.1110 -0.1110
-0.1110 -0.1110 -0.1110

Q*R - A

ans =

1.0e-15 *

-0.2220 0.2220 0.2220
0.4441 0 0
0.2220 0.2220 0.2220

Solving Systems of Equations Without Forming Q

Given matrices A and B, you can use the QR factorization to solve for X in
the following equation:

A*X = B.

3-131

3 Fixed-Point Topics

If A has more rows than columns, then X will be the least-squares solution. If
X and B have more than one column, then several solutions can be computed
at the same time. If A = Q*R is the QR factorization of A, then the solution
can be computed by back-solving

R*X = C

where C = Q'*B. Instead of forming Q and multiplying to get C = Q'*B, it is
more efficient to compute C directly. You can compute C directly by applying
the rotations to the rows of B instead of to the columns of an identity matrix.
The new algorithm is formed by the small modification of initializing C = B,
and operating along the rows of C instead of the columns of Q.

function [R,C] = cordicrc(A,B,niter)
Kn = inverse_cordic_growth_constant(niter);
[m,n] = size(A);
R = A;
C = B;
for j=1:n

for i=j+1:m
[R(j,j:end),R(i,j:end),C(j,:),C(i,:)] = ...

cordicgivens(R(j,j:end),R(i,j:end),C(j,:),C(i,:),niter,Kn);
end

end
end

You can verify the algorithm with this example. Let A be a random 3-by-3
matrix, and B be a random 3-by-2 matrix.

A = [-0.8201 0.3573 -0.0100
-0.7766 -0.0096 -0.7048
-0.7274 -0.6206 -0.8901];

B = [-0.9286 0.3575
0.6983 0.5155
0.8680 0.4863];

Compute the QR factorization of A.

[Q,R] = cordicqr(A)

3-132

Perform QR Factorization Using CORDIC

Q =

-0.6105 0.6133 0.5012
-0.5781 0.0876 -0.8113
-0.5415 -0.7850 0.3011

R =

1.3434 0.1235 0.8955
0 0.7054 0.6309
0 0 0.2988

Compute C = Q'*B directly.

[R,C] = cordicrc(A,B)

R =

1.3434 0.1235 0.8955
0 0.7054 0.6309
0 0 0.2988

C =

-0.3068 -0.7795
-1.1897 -0.1173
-0.7706 -0.0926

Subtract, and you will see that the error difference is on the order of roundoff.

Q'*B - C

ans =

3-133

3 Fixed-Point Topics

1.0e-15 *

-0.0555 0.3331
0 0

0.1110 0.2914

Now try the example in fixed-point. Declare A and B to be fixed-point types.

A = sfi(A)

A =

-0.8201 0.3573 -0.0100
-0.7766 -0.0096 -0.7048
-0.7274 -0.6206 -0.8901

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

B = sfi(B)

B =

-0.9286 0.3575
0.6983 0.5155
0.8680 0.4863

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

The necessary growth is 1.6468 times the square-root of the number of rows
of A.

3-134

Perform QR Factorization Using CORDIC

bit_growth = ceil(log2(cordic_growth_constant*sqrt(m)))

bit_growth =

2

Initialize R with the same values as A, and allow for bit growth.

R = sfi(A, get(A,'WordLength')+bit_growth, get(A,'FractionLength'))

R =

-0.8201 0.3573 -0.0100
-0.7766 -0.0096 -0.7048
-0.7274 -0.6206 -0.8901

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 15

The growth in C is the same as R, so initialize C and allow for bit growth
the same way.

C = sfi(B, get(B,'WordLength')+bit_growth, get(B,'FractionLength'))

C =

-0.9286 0.3575
0.6983 0.5155
0.8680 0.4863

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 15

3-135

3 Fixed-Point Topics

Compute C = Q’*B directly, overwriting R and C.

[R,C] = cordicrc(R,C)

R =

1.3435 0.1233 0.8954
0 0.7055 0.6308
0 0 0.2988

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 15

C =

-0.3068 -0.7796
-1.1898 -0.1175
-0.7706 -0.0926

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 15

An interesting use of this algorithm is that if you initialize B to be the identity
matrix, then output argument C is Q’. You may want to use this feature to
have more control over the data type of Q. For example,

A = [-0.8201 0.3573 -0.0100
-0.7766 -0.0096 -0.7048
-0.7274 -0.6206 -0.8901];

B = eye(size(A,1))

B =

3-136

Perform QR Factorization Using CORDIC

1 0 0
0 1 0
0 0 1

[R,C] = cordicrc(A,B)

R =

1.3434 0.1235 0.8955
0 0.7054 0.6309
0 0 0.2988

C =

-0.6105 -0.5781 -0.5415
0.6133 0.0876 -0.7850
0.5012 -0.8113 0.3011

Then C is orthogonal

C'*C

ans =

1.0000 0.0000 0.0000
0.0000 1.0000 -0.0000
0.0000 -0.0000 1.0000

and R = C*A

R - C*A

ans =

3-137

3 Fixed-Point Topics

1.0e-15 *

0.6661 -0.0139 -0.1110
0.5551 -0.2220 0.6661

-0.2220 -0.1110 0.2776

Links to the Documentation

Fixed-Point Toolbox™

• bitsra Bit shift right arithmetic

• fi Construct fixed-point numeric object

• fimath Construct fimath object

• fipref Construct fipref object

• get Property values of object

• globalfimath Configure global fimath and return handle object

• isfi Determine whether variable is fi object

• sfi Construct signed fixed-point numeric object

• upperbound Upper bound of range of fi object

• fiaccel Accelerate fixed-point code

MATLAB

• bitshift Shift bits specified number of places

• ceil Round toward positive infinity

• double Convert to double precision floating point

• eps Floating-point relative accuracy

• eye Identity matrix

• log2 Base 2 logarithm and dissect floating-point numbers into exponent
and mantissa

3-138

Perform QR Factorization Using CORDIC

• prod Product of array elements

• qr Orthogonal-triangular factorization

• repmat Replicate and tile array

• single Convert to single precision floating point

• size Array dimensions

• sqrt Square root

• subsasgn Subscripted assignment

Functions Used in this Example

These are the MATLAB functions used in this example.

CORDICQR computes the QR factorization using CORDIC.

• [Q,R] = cordicqr(A) chooses the number of CORDIC iterations based
on the type of A.

• [Q,R] = cordicqr(A,niter) uses niter number of CORDIC iterations.

CORDICRC computes R from the QR factorization of A, and also returns C =
Q'*B without computing Q.

• [R,C] = cordicrc(A,B) chooses the number of CORDIC iterations based
on the type of A.

• [R,C] = cordicrc(A,B,niter) uses niter number of CORDIC iterations.

CORDIC_GROWTH_CONSTANT returns the CORDIC growth constant.

• cordic_growth = cordic_growth_constant(niter) returns the CORDIC
growth constant as a function of the number of CORDIC iterations, niter.

GIVENSQR computes the QR factorization using standard Givens rotations.

• [Q,R] = givensqr(A), where A is M-by-N, produces an M-by-N upper
triangular matrix R and an M-by-M orthogonal matrix Q so that A = Q*R.

3-139

3 Fixed-Point Topics

CORDICQR_MAKEPLOTS makes the plots in this example by executing
the following from the MATLAB command line.

load A_3_by_3_for_cordicqr_demo.mat
niter=32;
[Q,R] = cordicqr_makeplots(A,niter)

References

1 Ray Andraka, "A survey of CORDIC algorithms for FPGA based
computers," 1998, ACM 0-89791-978-5/98/01.

2 Anthony J Cox and Nicholas J Higham, "Stability of Householder QR
factorization for weighted least squares problems," in Numerical Analysis,
1997, Proceedings of the 17th Dundee Conference, Griffiths DF, Higham
DJ, Watson GA (eds). Addison-Wesley, Longman: Harlow, Essex, U.K.,
1998; 57-73.

3 Gene H. Golub and Charles F. Van Loan, Matrix Computations, 3rd ed,
Johns Hopkins University Press, 1996, section 5.2.3 Givens QR Methods.

4 Daniel V. Rabinkin, William Song, M. Michael Vai, and Huy T. Nguyen,
"Adaptive array beamforming with fixed-point arithmetic matrix
inversion using Givens rotations," Proceedings of Society of Photo-Optical
Instrumentation Engineers (SPIE) -- Volume 4474 Advanced Signal
Processing Algorithms, Architectures, and Implementations XI, Franklin
T. Luk, Editor, November 2001, pp. 294--305.

5 Jack E. Volder, "The CORDIC Trigonometric Computing Technique,"
Institute of Radio Engineers (IRE) Transactions on Electronic Computers,
September, 1959, pp. 330-334.

6 Musheng Wei and Qiaohua Liu, "On growth factors of the modified
Gram-Schmidt algorithm," Numerical Linear Algebra with Applications,
Vol. 15, issue 7, September 2008, pp. 621-636.

Cleanup

fipref(originalFipref);
globalfimath(originalGlobalFimath);
close all

3-140

Perform QR Factorization Using CORDIC

set(0, 'format', originalFormat);

3-141

3 Fixed-Point Topics

Compute Square Root Using CORDIC Hyperbolic Kernel
This example shows how to compute square root using a CORDIC hyperbolic
kernel algorithm in MATLAB. CORDIC-based algorithms are critical to
many embedded applications, including motor controls, navigation, signal
processing, and wireless communications.

Introduction

CORDIC is an acronym for COordinate Rotation DIgital Computer. The
Givens rotation-based CORDIC algorithm (see [1,2]) is one of the most
hardware efficient algorithms because it only requires iterative shift-add
operations. The CORDIC algorithm eliminates the need for explicit
multipliers, and is suitable for calculating a variety of functions, such as sine,
cosine, arcsine, arccosine, arctangent, vector magnitude, divide, square root,
hyperbolic and logarithmic functions.

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration

• 2 shifts per iteration

• 3 additions per iteration

Note that for hyperbolic CORDIC-based algorithms, such as square root,
certain iterations (i = 4, 7, 10, ..., 3k+1, ...) are repeated to achieve result
convergence. There is an additional cost of 3 additions for each of those
repeated iterations.

CORDIC Kernel Algorithms Using Hyperbolic Computation Modes

You can use a CORDIC computing mode algorithm to calculate hyperbolic
functions, such as hyperbolic trigonometric, square root, log, exp, etc.

In hyperbolic rotation mode, the CORDIC equations are:

3-142

Compute Square Root Using CORDIC Hyperbolic Kernel

where if , and otherwise;

, and is the total number of iterations.

This mode provides the following result as approaches :

•

•

•

Where:

.

Typically is chosen to be a large-enough constant value. Thus, may
be pre-computed.

In hyperbolic vectoring mode, the CORDIC equations are as above, but with
if , and otherwise;

The vectoring mode provides the following result as N approaches :

•

•

•

Note that the rotations in the hyperbolic coordinate system do not converge.
It has been shown, however, that convergence is achieved if certain iterations
(i = 4, 7, 10, ..., 3k+1, ...) are repeated.

Efficient MATLAB Implementation of a CORDIC Hyperbolic Vectoring Algorithm

3-143

3 Fixed-Point Topics

A MATLAB code implementation example of the CORDIC Hyperbolic
Vectoring algorithm follows (for the case of scalar x, y, and z). This same code
can be used for both fixed-point and floating-point operation.

CORDIC Hyperbolic Vectoring Kernel

function [x, y, z] = cordic_hyperbolic_vectoring_kernel(x, y, z, inpLUT, n)
% Perform CORDIC hyperbolic vectoring kernel algorithm for N iterations.
k = 3; % Used for REPEAT rotations at (idx == 4, 7, 10, ..., 3k+1, ...)
for idx = 1:n

xtmp = bitsra(x, idx); % multiply by 2^(-idx)
ytmp = bitsra(y, idx); % multiply by 2^(-idx)

if y < 0
x(:) = accumpos(x, ytmp);
y(:) = accumpos(y, xtmp);
z(:) = accumneg(z, inpLUT(idx));

else
x(:) = accumneg(x, ytmp);
y(:) = accumneg(y, xtmp);
z(:) = accumpos(z, inpLUT(idx));

end

if k > 0
k = k-1; % Decrease '3k+1' counter

else
k = 3; % Re-start '3k+1' counter and REPEAT rotation
if y < 0

x(:) = accumpos(x, ytmp);
y(:) = accumpos(y, xtmp);
z(:) = accumneg(z, inpLUT(idx));

else
x(:) = accumneg(x, ytmp);
y(:) = accumneg(y, xtmp);
z(:) = accumpos(z, inpLUT(idx));

end
end

end % idx loop

CORDIC-Based Square Root Computation

3-144

Compute Square Root Using CORDIC Hyperbolic Kernel

Square Root Computation Using the CORDIC Hyperbolic Kernel

The judicious choice of initial values allows the CORDIC kernel hyperbolic
vectoring mode algorithm to compute square root.

First, the following initialization steps are performed:

• The input look-up table inpLUT is set to atanh(2 .^ -(1:N)).

• is set to .

• is set to .

• is set to zero.

After iterations, these initial values lead to the following output as
approaches :

For many square root algorithms, the input value is typically normalized
to a [0.5, 2) range, using a fixed word length normalization. This additional
pre-processing step may be used to support large input value ranges, since
arbitrary inputs may be expressed as , where is an even integer
value. Simple post-processing may then be used to adjust corresponding
output values.

Example

Use CORDIC to compute the square root of v_fix:

xyNT = numerictype(1,20,16);
v_fix = fi(((2^-5):(2^-5):3.0), xyNT); % fixed-point input values
niter = 10; % note that iterations 4, 7, and 10 will be repeated
hpLUT = atanh(2 .^ -(1:niter));
z_NT = numerictype(1,24,23);
lutFP = fi(hpLUT, z_NT);
x_sqr = fi(zeros(size(v_fix)), xyNT); % X array pre-allocation
y_sqr = fi(zeros(size(v_fix)), xyNT); % Y array pre-allocation
z_sqr = fi(zeros(size(v_fix)), z_NT); % Z array pre-allocation

3-145

3 Fixed-Point Topics

for idx = 1:length(v_fix)
x_in = fi(accumpos(v_fix(idx), 0.25)); % v + 0.25 in same data type
y_in = fi(accumneg(v_fix(idx), 0.25)); % v - 0.25 in same data type
z_in = fi(0, z_NT);

[x_sqr(idx), y_sqr(idx), z_sqr(idx)] = ...
fidemo.cordic_hyperbolic_vectoring_kernel(...

x_in, y_in, z_in, lutFP, niter);
end

% Get the Real World Value (RWV) of the CORDIC outputs for comparison
% and plot the error between the MATLAB reference and CORDIC sqrt values
An_hp = 0.5 .* prod(sqrt(1+2.^(-2*(0:(niter-1)))));
x_cdc = double(x_sqr) ./ An_hp; % CORDIC sqrt results (scaled by An_hp)
v_ref = double(v_fix);
x_ref = sqrt(v_ref); % MATLAB sqrt reference results
figure;
subplot(311);
plot(v_ref, x_cdc, 'r.');
hold on;
plot(v_ref, x_ref, 'b-');
legend('CORDIC', 'Reference', 'Location', 'SouthEast');
title('CORDIC Square Root and MATLAB SQRT Reference Results');
hold off;
subplot(312);
absErr = abs(x_ref - x_cdc);
plot(v_ref, absErr);
title('Absolute Error (vs. MATLAB SQRT Reference Results)');
subplot(313);
plot(v_ref, 100 .* (absErr ./ x_ref));
title('Percent Error (vs. MATLAB SQRT Reference Results)');

3-146

Compute Square Root Using CORDIC Hyperbolic Kernel

References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959,
pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on
Field programmable gate arrays, Feb. 22-24, 1998, pp191-200

3-147

3 Fixed-Point Topics

Convert Cartesian to Polar Using CORDIC Vectoring Kernel
This example shows how to convert Cartesian to polar coordinates using a
CORDIC vectoring kernel algorithm in MATLAB. CORDIC-based algorithms
are critical to many embedded applications, including motor controls,
navigation, signal processing, and wireless communications.

Introduction

CORDIC is an acronym for COordinate Rotation DIgital Computer. The
Givens rotation-based CORDIC algorithm (see [1,2]) is one of the most
hardware efficient algorithms because it only requires iterative shift-add
operations. The CORDIC algorithm eliminates the need for explicit
multipliers, and is suitable for calculating a variety of functions, such as sine,
cosine, arcsine, arccosine, arctangent, vector magnitude, divide, square root,
hyperbolic and logarithmic functions.

The fixed-point CORDIC algorithm requires the following operations:

• 1 table lookup per iteration

• 2 shifts per iteration

• 3 additions per iteration

CORDIC Kernel Algorithm Using the Vectoring Computation Mode

You can use a CORDIC vectoring computing mode algorithm to calculate
atan(y/x), compute cartesian-polar to cartesian conversions, and for other
operations. In vectoring mode, the CORDIC rotator rotates the input vector
towards the positive X-axis to minimize the component of the residual
vector. For each iteration, if the coordinate of the residual vector is positive,
the CORDIC rotator rotates clockwise (using a negative angle); otherwise,
it rotates counter-clockwise (using a positive angle). Each rotation uses a
progressively smaller angle value. If the angle accumulator is initialized to
0, at the end of the iterations, the accumulated rotation angle is the angle
of the original input vector.

In vectoring mode, the CORDIC equations are:

3-148

Convert Cartesian to Polar Using CORDIC Vectoring Kernel

is the angle accumulator

where if , and otherwise;

, and is the total number of iterations.

As approaches :

Where:

.

Typically is chosen to be a large-enough constant value. Thus, may
be pre-computed.

Efficient MATLAB Implementation of a CORDIC Vectoring Kernel Algorithm

A MATLAB code implementation example of the CORDIC Vectoring Kernel
algorithm follows (for the case of scalar x, y, and z). This same code can be
used for both fixed-point and floating-point operation.

CORDIC Vectoring Kernel

function [x, y, z] = cordic_vectoring_kernel(x, y, z, inpLUT, n)
% Perform CORDIC vectoring kernel algorithm for N iterations.
xtmp = x;
ytmp = y;
for idx = 1:n

if y < 0
x(:) = accumneg(x, ytmp);

3-149

3 Fixed-Point Topics

y(:) = accumpos(y, xtmp);
z(:) = accumneg(z, inpLUT(idx));

else
x(:) = accumpos(x, ytmp);
y(:) = accumneg(y, xtmp);
z(:) = accumpos(z, inpLUT(idx));

end
xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2^(-idx)
ytmp = bitsra(y, idx); % bit-shift-right for multiply by 2^(-idx)

end

CORDIC-Based Cartesian to Polar Conversion Using Normalized Input Units

Cartesian to Polar Computation Using the CORDIC Vectoring Kernel

The judicious choice of initial values allows the CORDIC kernel vectoring

mode algorithm to directly compute the magnitude and angle
.

The input accumulators are initialized to the input coordinate values:

•

•

The angle accumulator is initialized to zero:

•

After iterations, these initial values lead to the following outputs as
approaches :

•

•

Other vectoring-kernel-based function approximations are possible via pre-
and post-processing and using other initial conditions (see [1,2]).

3-150

Convert Cartesian to Polar Using CORDIC Vectoring Kernel

Example

Suppose that you have some measurements of Cartesian (X,Y) data,
normalized to values between [-1, 1), that you want to convert into polar
(magnitude, angle) coordinates. Also suppose that you have a 16-bit integer
arithmetic unit that can perform add, subtract, shift, and memory operations.
With such a device, you could implement the CORDIC vectoring kernel to
efficiently compute magnitude and angle from the input (X,Y) coordinate
values, without the use of multiplies or large lookup tables.

sumWL = 16; % CORDIC sum word length
thNorm = -1.0:(2^-8):1.0; % Also using normalized [-1.0, 1.0] angle values
theta = fi(thNorm, 1, sumWL); % Fixed-point angle values (best precision)
z_NT = numerictype(theta); % Data type for Z
xyCPNT = numerictype(1,16,15); % Using normalized X-Y range [-1.0, 1.0)
thetaRadians = pi/2 .* thNorm; % real-world range [-pi/2 pi/2] angle values
inXfix = fi(0.50 .* cos(thetaRadians), xyCPNT); % X coordinate values
inYfix = fi(0.25 .* sin(thetaRadians), xyCPNT); % Y coordinate values

niters = 13; % Number of CORDIC iterations
inpLUT = fi(atan(2 .^ (-((0:(niters-1))'))) .* (2/pi), z_NT); % Normalized
z_c2p = fi(zeros(size(theta)), z_NT); % Z array pre-allocation
x_c2p = fi(zeros(size(theta)), xyCPNT); % X array pre-allocation
y_c2p = fi(zeros(size(theta)), xyCPNT); % Y array pre-allocation

for idx = 1:length(inXfix)
% CORDIC vectoring kernel iterations
[x_c2p(idx), y_c2p(idx), z_c2p(idx)] = ...

fidemo.cordic_vectoring_kernel(...
inXfix(idx), inYfix(idx), fi(0, z_NT), inpLUT, niters);

end

% Get the Real World Value (RWV) of the CORDIC outputs for comparison
% and plot the error between the (magnitude, angle) values
AnGain = prod(sqrt(1+2.^(-2*(0:(niters-1))))); % CORDIC gain
x_c2p_RWV = (1/AnGain) .* double(x_c2p); % Magnitude (scaled by CORDIC g
z_c2p_RWV = (pi/2) .* double(z_c2p); % Angles (in radian units)
[thRWV,rRWV] = cart2pol(double(inXfix), double(inYfix)); % MATLAB reference
magnitudeErr = rRWV - x_c2p_RWV;
angleErr = thRWV - z_c2p_RWV;

3-151

3 Fixed-Point Topics

figure;
subplot(411);
plot(thNorm, x_c2p_RWV);
axis([-1 1 0.25 0.5]);
title('CORDIC Magnitude (X) Values');
subplot(412);
plot(thNorm, magnitudeErr);
title('Error between Magnitude Reference Values and X Values');
subplot(413);
plot(thNorm, z_c2p_RWV);
title('CORDIC Angle (Z) Values');
subplot(414);
plot(thNorm, angleErr);
title('Error between Angle Reference Values and Z Values');

References

3-152

Convert Cartesian to Polar Using CORDIC Vectoring Kernel

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959,
pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on
Field programmable gate arrays, Feb. 22-24, 1998, pp191-200

3-153

3 Fixed-Point Topics

Set Data Types Using Min/Max Instrumentation
This example shows how to set fixed-point data types by instrumenting
MATLAB code for min/max logging and using the tools to propose data types.

The functions you will use are:

• buildInstrumentedMex - Build MEX function with instrumentation
enabled

• showInstrumentationResults - Show instrumentation results

• clearInstrumentationResults - Clear instrumentation results

The Unit Under Test

The function that you convert to fixed-point in this example is a second-order
direct-form 2 transposed filter. You can substitute your own function in place
of this one to reproduce these steps in your own work.

function [y,z] = fi_2nd_order_df2t_filter(b,a,x,y,z)
for i=1:length(x)

y(i) = b(1)*x(i) + z(1);
z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
z(2) = b(3)*x(i) - a(3) * y(i);

end
end

For a MATLAB function to be instrumented, it must be suitable for code
generation. For information on code generation, see the reference page for
buildInstrumentedMex. A MATLAB Coder™ license is not required to use
buildInstrumentedMex.

In this function the variables y and z are used as both inputs and outputs.
This is an important pattern because:

• You can set the data type of y and z outside the function, thus allowing you
to re-use the function for both fixed-point and floating-point types.

• The generated C code will create y and z as references in the function
argument list. For more information about this pattern, see the

3-154

Set Data Types Using Min/Max Instrumentation

documentation under Code Generation from MATLAB > User’s Guide >
Generating Efficient and Reusable Code > Generating Efficient Code >
Eliminating Redundant Copies of Function Inputs.

Run the following code to copy the test function into a temporary directory so
this example doesn’t interfere with your own work.

tempdirObj = fidemo.fiTempdir('fi_instrumentation_fixed_point_filter_demo')

copyfile(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo',...
'fi_2nd_order_df2t_filter.m'),'.','f');

Run the following code to capture current states, and reset the global states.

FIPREF_STATE = fipref;
reset(fipref)

Data Types Determined by the Requirements of the Design

In this example, the requirements of the design determine the data type of
input x. These requirements are signed, 16-bit, and fractional.

N = 256;
x = fi(zeros(N,1),1,16,15);

The requirements of the design also determine the fixed-point math for a DSP
target with a 40-bit accumulator. This example uses floor rounding and wrap
overflow to produce efficient generated code.

F = fimath('RoundingMethod','Floor',...
'OverflowAction','Wrap',...
'ProductMode','KeepLSB',...
'ProductWordLength',40,...
'SumMode','KeepLSB',...
'SumWordLength',40);

The following coefficients correspond to a second-order lowpass filter created
by

[num,den] = butter(2,0.125)

3-155

3 Fixed-Point Topics

The values of the coefficients influence the range of the values that will be
assigned to the filter output and states.

num = [0.0299545822080925 0.0599091644161849 0.0299545822080925];
den = [1 -1.4542435862515900 0.5740619150839550];

The data type of the coefficients, determined by the the requirements of the
design, are specified as 16-bit word length and scaled to best-precision. A
pattern for creating fi objects from constant coefficients is:

1. Cast the coefficients to fi objects using the default round-to-nearest and
saturate overflow settings, which gives the coefficients better accuracy.

2. Attach fimath with floor rounding and wrap overflow settings to control
arithmetic, which leads to more efficient C code.

b = fi(num,1,16); b.fimath = F;
a = fi(den,1,16); a.fimath = F;

Hard-code the filter coefficients into the implementation of this filter by
passing them as constants to the buildInstrumentedMex command.

B = coder.Constant(b);
A = coder.Constant(a);

Data Types Determined by the Values of the Coefficients and Inputs

The values of the coefficients and values of the inputs determine the data
types of output y and state vector z. Create them with a scaled double
datatype so their values will attain full range and you can identify potential
overflows and propose data types.

yisd = fi(zeros(N,1),1,16,15,'DataType','ScaledDouble','fimath',F);
zisd = fi(zeros(2,1),1,16,15,'DataType','ScaledDouble','fimath',F);

Instrument the MATLAB Function as a Scaled-Double MEX Function

To instrument the MATLAB code, you create a MEX function from the
MATLAB function using the buildInstrumentedMex command. The
inputs to buildInstrumentedMex are the same as the inputs to fiaccel,
but buildInstrumentedMex has no fi-object restrictions. The output of

3-156

Set Data Types Using Min/Max Instrumentation

buildInstrumentedMex is a MEX function with instrumentation inserted, so
when the MEX function is run, the simulated minimum and maximum values
are recorded for all named variables and intermediate values.

Use the '-o' option to name the MEX function that is generated. If you do
not use the '-o' option, then the MEX function is the name of the MATLAB
function with '_mex' appended. You can also name the MEX function
the same as the MATLAB function, but you need to remember that MEX
functions take precedence over MATLAB functions and so changes to the
MATLAB function will not run until either the MEX function is re-generated,
or the MEX function is deleted and cleared.

buildInstrumentedMex fi_2nd_order_df2t_filter ...
-o filter_scaled_double ...
-args {B,A,x,yisd,zisd}

Test Bench with Chirp Input

The test bench for this system is set up to run chirp and step signals. In
general, test benches for systems should cover a wide range of input signals.

The first test bench uses a chirp input. A chirp signal is a good representative
input because it covers a wide range of frequencies.

t = linspace(0,1,N); % Time vector from 0 to 1 second
f1 = N/2; % Target frequency of chirp set to Nyquist
xchirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x(:) = xchirp; % Cast the chirp to fixed-point

Run the Instrumented MEX Function to Record Min/Max Values

The instrumented MEX function must be run to record minimum
and maximum values for that simulation run. Subsequent runs
accumulate the instrumentation results until they are cleared with
clearInstrumentationResults.

Note that the numerator and denominator coefficients were compiled as
constants so they are not provided as input to the generated MEX function.

ychirp = filter_scaled_double(x,yisd,zisd);

3-157

3 Fixed-Point Topics

The plot of the filtered chirp signal shows the lowpass behavior of the filter
with these particular coefficients. Low frequencies are passed through and
higher frequencies are attenuated.

clf
plot(t,x,'c',t,ychirp,'bo-')
title('Chirp')
legend('Input','Scaled-double output')
figure(gcf); drawnow;

Show Instrumentation Results with Proposed Fraction Lengths for Chirp

The showInstrumentationResults command displays the code generation
report with instrumented values. The input to showInstrumentationResults
is the name of the instrumented MEX function for which you wish to show
results.

This is the list of options to the showInstrumentationResults command:

3-158

Set Data Types Using Min/Max Instrumentation

• -browser Open the instrumentation results in a system web browser
window. Use this option to open multiple reports so you can compare
results.

• -defaultDT T Default data type to propose for doubles, where T is a
numerictype object, or one of the strings {remainFloat, double,
single, int8, int16, int32, int64, uint8, uint16, uint32,
uint64}. The default is remainFloat.

• -optimizeWholeNumbers Optimize the word length of variables whose
simulation min/max logs indicate that they were always whole numbers.

• -percentSafetyMargin N Safety margin for simulation min/max, where N
represents a percent value.

• -printable Create a printable report.

• -proposeFL Propose fraction lengths for specified word lengths.

• -proposeWL Propose word lengths for specified fraction lengths.

Potential overflows are only displayed for fi objects with Scaled Double data
type.

This particular design is for a DSP, where the word lengths are fixed, so use
the proposeFL flag to propose fraction lengths.

showInstrumentationResults filter_scaled_double -proposeFL

Hover over expressions or variables in the instrumented code generation
report to see the simulation minimum and maximum values. In this design,
the inputs fall between -1 and +1, and the values of all variables and
intermediate results also fall between -1 and +1. This suggests that the data
types can all be fractional (fraction length one bit less than the word length).
However, this will not always be true for this function for other kinds of
inputs and it is important to test many types of inputs before setting final
fixed-point data types.

3-159

3 Fixed-Point Topics

Test Bench with Step Input

The next test bench is run with a step input. A step input is a good
representative input because it is often used to characterize the behavior
of a system.

xstep = [ones(N/2,1);-ones(N/2,1)];
x(:) = xstep;

Run the Instrumented MEX Function with Step Input

The instrumentation results are accumulated until they are cleared with
clearInstrumentationResults.

ystep = filter_scaled_double(x,yisd,zisd);

clf
plot(t,x,'c',t,ystep,'bo-')
title('Step')
legend('Input','Scaled-double output')

3-160

Set Data Types Using Min/Max Instrumentation

figure(gcf); drawnow;

Show Accumulated Instrumentation Results

Even though the inputs for step and chirp inputs are both full range as
indicated by x at 100 percent current range in the instrumented code
generation report, the step input causes overflow while the chirp input did
not. This is an illustration of the necessity to have many different inputs for
your test bench. For the purposes of this example, only two inputs were used,
but real test benches should be more thorough.

showInstrumentationResults filter_scaled_double -proposeFL

3-161

3 Fixed-Point Topics

Apply Proposed Fixed-Point Properties

To prevent overflow, set proposed fixed-point properties based on the proposed
fraction lengths of 14-bits for y and z from the instrumented code generation
report.

At this point in the workflow, you use true fixed-point types (as opposed to
the scaled double types that were used in the earlier step of determining
data types).

yi = fi(zeros(N,1),1,16,14,'fimath',F);
zi = fi(zeros(2,1),1,16,14,'fimath',F);

Instrument the MATLAB Function as a Fixed-Point MEX Function

Create an instrumented fixed-point MEX function by using fixed-point inputs
and the buildInstrumentedMex command.

buildInstrumentedMex fi_2nd_order_df2t_filter ...
-o filter_fixed_point ...

3-162

Set Data Types Using Min/Max Instrumentation

-args {B,A,x,yi,zi}

Validate the Fixed-Point Algorithm

After converting to fixed-point, run the test bench again with fixed-point
inputs to validate the design.

Validate with Chirp Input

Run the fixed-point algorithm with a chirp input to validate the design.

x(:) = xchirp;
[y,z] = filter_fixed_point(x,yi,zi);
[ysd,zsd] = filter_scaled_double(x,yisd,zisd);
err = double(y) - double(ysd);

Compare the fixed-point outputs to the scaled-double outputs to verify that
they meet your design criteria.

clf
subplot(211);plot(t,x,'c',t,ysd,'bo-',t,y,'mx')
xlabel('Time (s)');
ylabel('Amplitude')
legend('Input','Scaled-double output','Fixed-point output');
title('Fixed-Point Chirp')
subplot(212);plot(t,err,'r');title('Error');xlabel('t'); ylabel('err');
figure(gcf); drawnow;

3-163

3 Fixed-Point Topics

Inspect the variables and intermediate results to ensure that the min/max
values are within range.

showInstrumentationResults filter_fixed_point

3-164

Set Data Types Using Min/Max Instrumentation

Validate with Step Inputs

Run the fixed-point algorithm with a step input to validate the design.

Run the following code to clear the previous instrumentation results to see
only the effects of running the step input.

clearInstrumentationResults filter_fixed_point

Run the step input through the fixed-point filter and compare with the output
of the scaled double filter.

x(:) = xstep;
[y,z] = filter_fixed_point(x,yi,zi);
[ysd,zsd] = filter_scaled_double(x,yisd,zisd);
err = double(y) - double(ysd);

Plot the fixed-point outputs against the scaled-double outputs to verify that
they meet your design criteria.

3-165

3 Fixed-Point Topics

clf
subplot(211);plot(t,x,'c',t,ysd,'bo-',t,y,'mx')
title('Fixed-Point Step');
legend('Input','Scaled-double output','Fixed-point output')
subplot(212);plot(t,err,'r');title('Error');xlabel('t'); ylabel('err');
figure(gcf); drawnow;

Inspect the variables and intermediate results to ensure that the min/max
values are within range.

showInstrumentationResults filter_fixed_point

3-166

Set Data Types Using Min/Max Instrumentation

Run the following code to restore the global states.

fipref(FIPREF_STATE);
clearInstrumentationResults filter_fixed_point
clearInstrumentationResults filter_scaled_double
clear fi_2nd_order_df2t_filter_fixed_instrumented
clear fi_2nd_order_df2t_filter_float_instrumented

Run the following code to delete the temporary directory.

tempdirObj.cleanUp;

3-167

3 Fixed-Point Topics

Convert Fast Fourier Transform (FFT) to Fixed Point
This example shows how to convert a textbook version of the Fast Fourier
Transform (FFT) algorithm into fixed-point MATLAB code.

Run the following code to copy functions from the Fixed-Point Toolbox™
examples directory into a temporary directory so this example doesn’t
interfere with your own work.

tempdirObj = fidemo.fiTempdir('fi_radix2fft_demo');

copyfile(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo',...
'fi_m_radix2fft_algorithm1_6_2.m'),'.','f');

copyfile(fullfile(matlabroot,'toolbox','fixedpoint','fidemos',...
'fi_m_radix2fft_withscaling.m'),'.','f');

Run the following code to capture current states, and reset the global states.

FIPREF_STATE = fipref;
reset(fipref)

Textbook FFT Algorithm

FFT is a complex-valued linear transformation from the time domain to
the frequency domain. For example, if you construct a vector as the sum of
two sinusoids and transform it with the FFT, you can see the peaks of the
frequencies in the FFT magnitude plot.

n = 64; % Number of points
Fs = 4; % Sampling frequency in Hz
t = (0:(n-1))/Fs; % Time vector
f = linspace(0,Fs,n); % Frequency vector
f0 = .2; f1 = .5; % Frequencies, in Hz
x0 = cos(2*pi*f0*t) + 0.55*cos(2*pi*f1*t); % Time-domain signal
x0 = complex(x0); % The textbook algorithm requir

% the input to be complex
y = fft(x0); % Frequency-domain transformati

figure(gcf); clf
subplot(211); plot(t,real(x0),'b.-'); xlabel('Time (s)'); ylabel('Amplitude

3-168

Convert Fast Fourier Transform (FFT) to Fixed Point

subplot(212); plot(f,abs(y),'m.-'); xlabel('Frequency (Hz)'); ylabel('Magni

The peaks at 0.2 and 0.5 Hz in the frequency plot correspond to the two
sinusoids of the time-domain signal at those frequencies.

Note the reflected peaks at 3.5 and 3.8 Hz. When the input to an FFT is
real-valued, as it is in this case, then the output y is conjugate-symmetric:

There are many different implementations of the FFT, each having its own
costs and benefits. You may find that a different algorithm is better for your
application than the one given here. This algorithm is used to provide you
with an example of how you might begin your own exploration.

This example uses the decimation-in-time unit-stride FFT
shown in Algorithm 1.6.2 on page 45 of the book Computational
Frameworks for the Fast Fourier Transform by Charles Van Loan
(http://www.mathworks.com/support/books/book1384.html).

3-169

http://www.mathworks.com/support/books/book1384.html

3 Fixed-Point Topics

In pseudo-code, the algorithm in the textbook is as follows.

Algorithm 1.6.2. If is a complex vector of length and , then the
following algorithm overwrites with .

The textbook algorithm uses zero-based indexing. is an n-by-n
Fourier-transform matrix, is an n-by-n bit-reversal permutation matrix,
and is a complex vector of twiddle factors. The twiddle factors, , are
complex roots of unity computed by the following algorithm:

function w = fi_radix2twiddles(n)
t = log2(n);
if floor(t) ~= t

error('N must be an exact power of two.');
end
w = zeros(n-1,1);
k=1;
L=2;
% Equation 1.4.11, p. 34
while L<=n

theta = 2*pi/L;
% Algorithm 1.4.1, p. 23
for j=0:(L/2 - 1)

w(k) = complex(cos(j*theta), -sin(j*theta));
k = k + 1;

end

3-170

Convert Fast Fourier Transform (FFT) to Fixed Point

L = L*2;
end

figure(gcf);clf
w0 = fidemo.fi_radix2twiddles(n);
polar(angle(w0),abs(w0),'o')
title('Twiddle Factors: Complex roots of unity')

Verify Floating-Point Code

To implement the algorithm in MATLAB, you can use the
fidemo.fi_bitreverse function to bit-reverse the input sequence, and you
must add one to the indices to convert them from zero-based to one-based.

function x = fi_m_radix2fft_algorithm1_6_2(x, w)
n = length(x); t = log2(n);
x = fidemo.fi_bitreverse(x,n);
for q=1:t

L = 2^q; r = n/L; L2 = L/2;

3-171

3 Fixed-Point Topics

for k=0:(r-1)
for j=0:(L2-1)

temp = w(L2-1+j+1) * x(k*L+j+L2+1);
x(k*L+j+L2+1) = x(k*L+j+1) - temp;
x(k*L+j+1) = x(k*L+j+1) + temp;

end
end

end

To verify that you correctly implemented the algorithm in MATLAB, run a
known signal through it and compare the results to the results produced by
the MATLAB FFT function.

y = fi_m_radix2fft_algorithm1_6_2(x0, w0);

y0 = fft(x0); % MATLAB's built-in FFT for comparison

fidemo.fi_fft_demo_plot(real(x0),y,y0,Fs,'Double data', {'FFT Algorithm 1.6

3-172

Convert Fast Fourier Transform (FFT) to Fixed Point

Because the error is within tolerance of the MATLAB built-in FFT function,
you know you have correctly implemented the algorithm.

Identify Fixed-Point Issues

Now, try converting the data to fixed-point and see if the algorithm still looks
good. In this first pass, you use all the defaults for signed fixed-point data
by using the sfi constructor.

x = sfi(x0); % Convert to signed fixed-point
w = sfi(w0); % Convert to signed fixed-point

% Re-run the same algorithm with the fixed-point inputs
y = fi_m_radix2fft_algorithm1_6_2(x,w);
fidemo.fi_fft_demo_plot(real(x),y,y0,Fs,'Fixed-point data', ...

{'Fixed-point FFT Algorithm 1.6.2','Built-in'});

Note that the magnitude plot (center) of the fixed-point FFT does not resemble
the plot of the built-in FFT. The error (bottom plot) is much larger than what

3-173

3 Fixed-Point Topics

you would expect to see for round off error, so it is likely that overflow has
occurred.

Use Min/Max Instrumentation to Identify Overflows

To instrument the MATLAB code, you create a MEX function from the
MATLAB function using the buildInstrumentedMex command. The
inputs to buildInstrumentedMex are the same as the inputs to fiaccel,
but buildInstrumentedMex has no fi-object restrictions. The output of
buildInstrumentedMex is a MEX function with instrumentation inserted, so
when the MEX function is run, the simulated minimum and maximum values
are recorded for all named variables and intermediate values.

The '-o' option is used to name the MEX function that is generated. If the
'-o' option is not used, then the MEX function is the name of the MATLAB
function with '_mex' appended. You can also name the MEX function
the same as the MATLAB function, but you need to remember that MEX
functions take precedence over MATLAB functions and so changes to the
MATLAB function will not run until either the MEX function is re-generated,
or the MEX function is deleted and cleared.

Create the input with a scaled double datatype so its values will attain full
range and you can identify potential overflows.

x_scaled_double = fi(x0,'DataType','ScaledDouble');
buildInstrumentedMex fi_m_radix2fft_algorithm1_6_2 ...

-o fft_instrumented -args {x_scaled_double w}

Run the instrumented MEX function to record min/max values.

y_scaled_double = fft_instrumented(x_scaled_double,w);

Show the instrumentation results.

showInstrumentationResults fft_instrumented

You can see from the instrumentation results that there were overflows when
assigning into the variable x.

3-174

Convert Fast Fourier Transform (FFT) to Fixed Point

3-175

3 Fixed-Point Topics

Modify the Algorithm to Address Fixed-Point Issues

The magnitude of an individual bin in the FFT grows, at most, by a factor of
n, where n is the length of the FFT. Hence, by scaling your data by 1/n, you
can prevent overflow from occurring for any input.

When you scale only the input to the first stage of a length-n FFT by 1/n,
you obtain a noise-to-signal ratio proportional to n^2 [Oppenheim & Schafer
1989, equation 9.101], [Welch 1969].

However, if you scale the input to each of the stages of the FFT by 1/2,
you can obtain an overall scaling of 1/n and produce a noise-to-signal ratio
proportional to n [Oppenheim & Schafer 1989, equation 9.105], [Welch 1969].

An efficient way to scale by 1/2 in fixed-point is to right-shift the data. To do
this, you use the bit shift right arithmetic function bitsra. After scaling
each stage of the FFT, and optimizing the index variable computation, your
algorithm becomes:

function x = fi_m_radix2fft_withscaling(x, w)
n = length(x); t = log2(n);
x = fidemo.fi_bitreverse(x,n);
% Generate index variables as integer constants so they are not computed in
% the loop.
LL = int32(2.^(1:t)); rr = int32(n./LL); LL2 = int32(LL./2);
for q=1:t

L = LL(q); r = rr(q); L2 = LL2(q);
for k=0:(r-1)

for j=0:(L2-1)
temp = w(L2-1+j+1) * x(k*L+j+L2+1);
x(k*L+j+L2+1) = bitsra(x(k*L+j+1) - temp, 1);
x(k*L+j+1) = bitsra(x(k*L+j+1) + temp, 1);

end
end

end

Run the scaled algorithm with fixed-point data.

3-176

Convert Fast Fourier Transform (FFT) to Fixed Point

x = sfi(x0);
w = sfi(w0);

y = fi_m_radix2fft_withscaling(x,w);

fidemo.fi_fft_demo_plot(real(x), y, y0/n, Fs, 'Fixed-point data', ...
{'Fixed-point FFT with scaling','Scaled built-in'})

You can see that the scaled fixed-point FFT algorithm now matches the
built-in FFT to a tolerance that is expected for 16-bit fixed-point data.

References

Charles Van Loan, Computational Frameworks for the Fast Fourier Transform,
SIAM, 1992, http://www.mathworks.com/support/books/book1384.html.

Cleve Moler, Numerical Computing with MATLAB,
SIAM, 2004, Chapter 8 Fourier Analysis,

3-177

http://www.mathworks.com/support/books/book1384.html

3 Fixed-Point Topics

http://www.mathworks.com/company/aboutus/founders/clevemoler.html,
http://www.mathworks.com/support/books/book7638.html.

Alan V. Oppenheim and Ronald W. Schafer, Discrete-Time Signal Processing,
Prentice Hall, 1989.

Peter D. Welch, "A Fixed-Point Fast Fourier Transform Error Analysis,"
IEEE Transactions on Audio and Electroacoustics, Vol. AU-17, No. 2, June
1969, pp. 151-157.

Run the following code to restore the global states.

fipref(FIPREF_STATE);
clearInstrumentationResults fft_instrumented
clear fft_instrumented

Run the following code to delete the temporary directory.

tempdirObj.cleanUp;

3-178

http://www.mathworks.com/company/aboutus/founders/clevemoler.html
http://www.mathworks.com/support/books/book7638.html

Detect Limit Cycles in Fixed-Point State-Space Systems

Detect Limit Cycles in Fixed-Point State-Space Systems
This example shows how to analyze a fixed-point state-space system to detect
limit cycles.

The example focuses on detecting large scale limit cycles due to overflow
with zero inputs and highlights the conditions that are sufficient to prevent
such oscillations.

References:

[1] Richard A. Roberts and Clifford T. Mullis, "Digital Signal Processing",
Addison-Wesley, Reading, Massachusetts, 1987, ISBN 0-201-16350-0, Section
9.3.

[2] S. K. Mitra, "Digital Signal Processing: A Computer Based Approach",
McGraw-Hill, New York, 1998, ISBN 0-07-042953-7.

Select a State-Space Representation of the System.

We observe that the system is stable by observing that the eigenvalues of the
state-transition matrix A have magnitudes less than 1.

format
A = [0 1; -.5 1]; B = [0; 1]; C = [1 0]; D = 0;
eig(A)

ans =

0.5000 + 0.5000i
0.5000 - 0.5000i

Filter Implementation

type(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo','fisiso

function [y,z] = fisisostatespacefilter(A,B,C,D,x,z)

3-179

3 Fixed-Point Topics

%FISISOSTATESPACEFILTER Single-input, single-output statespace filter
% [Y,Zf] = FISISOSTATESPACEFILTER(A,B,C,D,X,Zi) filters data X with
% initial conditions Zi with the state-space filter defined by matrices
% A, B, C, D. Output Y and final conditions Zf are returned.

% Copyright 2004-2011 The MathWorks, Inc.
% $Revision: 1.1.6.1 $

y = x;
z(:,2:length(x)+1) = 0;
for k=1:length(x)

y(k) = C*z(:,k) + D*x(k);
z(:,k+1) = A*z(:,k) + B*x(k);

end

Floating-Point Filter

Create a floating-point filter and observe the trajectory of the states.

First, we choose random states within the unit square and observe where
they are projected after one step of being multiplied by the state-transition
matrix A.

rng('default');
clf
x1 = [-1 1 1 -1 -1];
y1 = [-1 -1 1 1 -1];
plot(x1,y1,'c')
axis([-1.5 1.5 -1.5 1.5]); axis square; grid;
hold on

% Plot the projection of the square
p = A*[x1;y1];
plot(p(1,:),p(2,:),'r')

r = 2*rand(2,1000)-1;
pr = A*r;
plot(pr(1,:),pr(2,:),'.')

3-180

Detect Limit Cycles in Fixed-Point State-Space Systems

Random Initial States Followed Through Time

Drive the filter with a random initial state, normalized to be inside the unit
square, with the input all zero, and run the filter.

Note that some of the states wander outside the unit square, and that they
eventually wind down to the zero state at the origin, z=[0;0].

x = zeros(10,1);
zi = [0;0];
q = quantizer([16 15]);
for k=1:20

y = x;
zi(:) = randquant(q,size(A,1),1);
[y,zf] = fidemo.fisisostatespacefilter(A,B,C,D,x,zi);
plot(zf(1,:), zf(2,:),'go-','markersize',8);

end
title('Double-Precision State Sequence Plot');
xlabel('z1'); ylabel('z2')

3-181

3 Fixed-Point Topics

State Trajectory

Because the eigenvalues are less than one in magnitude, the system is stable,
and all initial states wind down to the origin with zero input. However, the
eigenvalues don’t tell the whole story about the trajectory of the states, as
in this example, where the states were projected outward first, before they
start to contract.

The singular values of A give us a better indication of the overall state
trajectory. The largest singular value is about 1.46, which indicates that
states aligned with the corresponding singular vector will be projected away
from the origin.

svd(A)

ans =

3-182

Detect Limit Cycles in Fixed-Point State-Space Systems

1.4604
0.3424

Fixed-Point Filter Creation

Create a fixed-point filter and check for limit cycles.

The MATLAB code for the filter remains the same. It becomes a fixed-point
filter because we drive it with fixed-point inputs.

For the sake of illustrating overflow oscillation, we are choosing product and
sum data types that will overflow.

rng('default');
F = fimath('OverflowAction','Wrap',...

'ProductMode','SpecifyPrecision',...
'ProductWordLength',16,'ProductFractionLength',15,...
'SumMode','SpecifyPrecision',...
'SumWordLength',16,'SumFractionLength',15);

A = fi(A,'fimath',F)
B = fi(B,'fimath',F)
C = fi(C,'fimath',F)
D = fi(D,'fimath',F)

A =

0 1.0000
-0.5000 1.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 14

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: SpecifyPrecision

3-183

3 Fixed-Point Topics

ProductWordLength: 16
ProductFractionLength: 15

SumMode: SpecifyPrecision
SumWordLength: 16

SumFractionLength: 15
CastBeforeSum: true

B =

0
1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 14

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: SpecifyPrecision
ProductWordLength: 16

ProductFractionLength: 15
SumMode: SpecifyPrecision

SumWordLength: 16
SumFractionLength: 15

CastBeforeSum: true

C =

1 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 14

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: SpecifyPrecision
ProductWordLength: 16

3-184

Detect Limit Cycles in Fixed-Point State-Space Systems

ProductFractionLength: 15
SumMode: SpecifyPrecision

SumWordLength: 16
SumFractionLength: 15

CastBeforeSum: true

D =

0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: SpecifyPrecision
ProductWordLength: 16

ProductFractionLength: 15
SumMode: SpecifyPrecision

SumWordLength: 16
SumFractionLength: 15

CastBeforeSum: true

Plot the Projection of the Square in Fixed-Point

Again, we choose random states within the unit square and observe where
they are projected after one step of being multiplied by the state-transition
matrix A. The difference is that this time matrix A is fixed-point.

Note that the triangles that projected out of the square before in floating-point,
are now wrapped back into the interior of the square.

clf
r = 2*rand(2,1000)-1;
pr = A*r;
plot([-1 1 1 -1 -1],[-1 -1 1 1 -1],'c')
axis([-1.5 1.5 -1.5 1.5]); axis square; grid;
hold on

3-185

3 Fixed-Point Topics

plot(pr(1,:),pr(2,:),'.')

Execute the Fixed-Point Filter.

The only difference between this and the previous code is that we are driving
it with fixed-point data types.

x = fi(zeros(10,1),1,16,15,'fimath',F);
zi = fi([0;0],1,16,15,'fimath',F);
q = assignmentquantizer(zi);
e = double(eps(zi));
rng('default');
for k=1:20

y = x;
zi(:) = randquant(q,size(A,1),1);
[y,zf] = fidemo.fisisostatespacefilter(A,B,C,D,x,zi);
if abs(double(zf(end)))>0.5, c='ro-'; else, c='go-'; end
plot(zf(1,:), zf(2,:),c,'markersize',8);

end

3-186

Detect Limit Cycles in Fixed-Point State-Space Systems

title('Fixed-Point State Sequence Plot');
xlabel('z1'); ylabel('z2')

Trying this for other randomly chosen initial states illustrates that once a
state enters one of the triangular regions, then it is projected into the other
triangular region, and back and forth, and never escapes.

Sufficient Conditions for Preventing Overflow Limit Cycles

There are two sufficient conditions to prevent overflow limit cycles in a system:

• the system is stable i.e., abs(eig(A))<1,

• the matrix A is normal i.e., A’*A = A*A’.

Note that for the current representation, the second condition does not hold.

Apply Similarity Transform to Create a Normal A

3-187

3 Fixed-Point Topics

We now apply a similarity transformation to the original system that will
create a normal state-transition matrix A2.

T = [-2 0;-1 1];
Tinv = [-.5 0;-.5 1];
A2 = Tinv*A*T; B2 = Tinv*B; C2 = C*T; D2 = D;

Similarity transformations preserve eigenvalues, as a result of which the
system transfer function of the transformed system remains same as before.
However, the transformed state transformation matrix A2 is normal.

Check for Limit Cycles on the Transformed System.

Plot the Projection of the Square of the Normal-Form System

Now the projection of random initial states inside the unit square all contract
uniformly. This is the result of the state transition matrix A2 being normal.
The states are also rotated by 90 degrees counterclockwise.

clf
r = 2*rand(2,1000)-1;
pr = A2*r;
plot([-1 1 1 -1 -1],[-1 -1 1 1 -1],'c')
axis([-1.5 1.5 -1.5 1.5]); axis square; grid;
hold on
plot(pr(1,:),pr(2,:),'.')

3-188

Detect Limit Cycles in Fixed-Point State-Space Systems

Plot the State Sequence

Plotting the state sequences again for the same initial states as before we see
that the outputs now spiral towards the origin.

x = fi(zeros(10,1),1,16,15,'fimath',F);
zi = fi([0;0],1,16,15,'fimath',F);
q = assignmentquantizer(zi);
e = double(eps(zi));
rng('default');
for k=1:20

y = x;
zi(:) = randquant(q,size(A,1),1);
[y,zf] = fidemo.fisisostatespacefilter(A2,B2,C2,D2,x,zi);
if abs(double(zf(end)))>0.5, c='ro-'; else, c='go-'; end
plot(zf(1,:), zf(2,:),c,'markersize',8);

end
title('Normal-Form Fixed-Point State Sequence Plot');
xlabel('z1'); ylabel('z2')

3-189

3 Fixed-Point Topics

Trying this for other randomly chosen initial states illustrates that there is no
region from which the filter is unable to recover.

3-190

Compute Quantization Error

Compute Quantization Error
This example shows how to compute and compare the statistics of the signal
quantization error when using various rounding methods.

First, a random signal is created that spans the range of the quantizer.

Next, the signal is quantized, respectively, with rounding methods ’fix’, ’floor’,
’ceil’, ’nearest’, and ’convergent’, and the statistics of the signal are estimated.

The theoretical probability density function of the quantization error will
be computed with ERRPDF, the theoretical mean of the quantization error
will be computed with ERRMEAN, and the theoretical variance of the
quantization error will be computed with ERRVAR.

Uniformly Distributed Random Signal

First we create a uniformly distributed random signal that spans the domain
-1 to 1 of the fixed-point quantizers that we will look at.

q = quantizer([8 7]);
r = realmax(q);
u = r*(2*rand(50000,1) - 1); % Uniformly distributed (-1,1)
xi=linspace(-2*eps(q),2*eps(q),256);

Fix: Round Towards Zero.

Notice that with ’fix’ rounding, the probability density function is twice as wide
as the others. For this reason, the variance is four times that of the others.

q = quantizer('fix',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t = errvar(q);
% Theoretical variance = eps(q)^2 / 3
% Theoretical mean = 0
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated error variance (dB) = -46.8586

3-191

3 Fixed-Point Topics

Theoretical error variance (dB) = -46.9154
Estimated mean = 7.788e-06
Theoretical mean = 0

Floor: Round Towards Minus Infinity.

Floor rounding is often called truncation when used with integers and
fixed-point numbers that are represented in two’s complement. It is the most
common rounding mode of DSP processors because it requires no hardware to
implement. Floor does not produce quantized values that are as close to the
true values as ROUND will, but it has the same variance, and small signals
that vary in sign will be detected, whereas in ROUND they will be lost.

q = quantizer('floor',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t = errvar(q);
% Theoretical variance = eps(q)^2 / 12

3-192

Compute Quantization Error

% Theoretical mean = -eps(q)/2
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated error variance (dB) = -52.9148
Theoretical error variance (dB) = -52.936
Estimated mean = -0.0038956
Theoretical mean = -0.0039063

Ceil: Round Towards Plus Infinity.

q = quantizer('ceil',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t = errvar(q);
% Theoretical variance = eps(q)^2 / 12
% Theoretical mean = eps(q)/2
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

3-193

3 Fixed-Point Topics

Estimated error variance (dB) = -52.9148
Theoretical error variance (dB) = -52.936
Estimated mean = 0.0039169
Theoretical mean = 0.0039063

Round: Round to Nearest. In a Tie, Round to Largest Magnitude.

Round is more accurate than floor, but all values smaller than eps(q) get
rounded to zero and so are lost.

q = quantizer('nearest',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t = errvar(q);
% Theoretical variance = eps(q)^2 / 12
% Theoretical mean = 0
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

3-194

Compute Quantization Error

Estimated error variance (dB) = -52.9579
Theoretical error variance (dB) = -52.936
Estimated mean = -2.212e-06
Theoretical mean = 0

Convergent: Round to Nearest. In a Tie, Round to Even.

Convergent rounding eliminates the bias introduced by ordinary "round"
caused by always rounding the tie in the same direction.

q = quantizer('convergent',[8 7]);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);
v_t = errvar(q);
% Theoretical variance = eps(q)^2 / 12
% Theoretical mean = 0
fidemo.qerrordemoplot(q,f_t,xi,mu_t,v_t,err)

3-195

3 Fixed-Point Topics

Estimated error variance (dB) = -52.9579
Theoretical error variance (dB) = -52.936
Estimated mean = -2.212e-06
Theoretical mean = 0

Comparison of Nearest vs. Convergent

The error probability density function for convergent rounding is difficult to
distinguish from that of round-to-nearest by looking at the plot.

The error p.d.f. of convergent is

f(err) = 1/eps(q), for -eps(q)/2 <= err <= eps(q)/2, and 0 otherwise

while the error p.d.f. of round is

f(err) = 1/eps(q), for -eps(q)/2 < err <= eps(q)/2, and 0 otherwise

Note that the error p.d.f. of convergent is symmetric, while round is slightly
biased towards the positive.

3-196

Compute Quantization Error

The only difference is the direction of rounding in a tie.

x=[-3.5:3.5]';
[x convergent(x) nearest(x)]

ans =

-3.5000 -4.0000 -3.0000
-2.5000 -2.0000 -2.0000
-1.5000 -2.0000 -1.0000
-0.5000 0 0
0.5000 0 1.0000
1.5000 2.0000 2.0000
2.5000 2.0000 3.0000
3.5000 4.0000 4.0000

Plot Helper Function

The helper function that was used to generate the plots in this example is
listed below.

type(fullfile(matlabroot,'toolbox','fixedpoint','fidemos','+fidemo','qerror

function qerrordemoplot(q,f_t,xi,mu_t,v_t,err)
%QERRORDEMOPLOT Plot function for QERRORDEMO.
% QERRORDEMOPLOT(Q,F_T,XI,MU_T,V_T,ERR) produces the plot and display us
% the example function QERRORDEMO, where Q is the quantizer whos attribu
% being analyzed; F_T is the theoretical quantization error probability
% density function for quantizer Q computed by ERRPDF; XI is the domain
% values being evaluated by ERRPDF; MU_T is the theoretical quantization
% error mean of quantizer Q computed by ERRMEAN; V_T is the theoretical
% quantization error variance of quantizer Q computed by ERRVAR; and ERR
% is the error generated by quantizing a random signal by quantizer Q.
%
% See QERRORDEMO for examples of use.

% Copyright 1999-2012 The MathWorks, Inc.

3-197

3 Fixed-Point Topics

v=10*log10(var(err));
disp(['Estimated error variance (dB) = ',num2str(v)]);
disp(['Theoretical error variance (dB) = ',num2str(10*log10(v_t))]);
disp(['Estimated mean = ',num2str(mean(err))]);
disp(['Theoretical mean = ',num2str(mu_t)]);
[n,c]=hist(err);
figure(gcf)
bar(c,n/(length(err)*(c(2)-c(1))),'hist');
line(xi,f_t,'linewidth',2,'color','r');
% Set the ylim uniformly on all plots
set(gca,'ylim',[0 max(errpdf(quantizer(q.format,'nearest'),xi)*1.1)])
legend('Estimated','Theoretical')
xlabel('err'); ylabel('errpdf')

3-198

Normalize Data for Lookup Tables

Normalize Data for Lookup Tables
This example shows how to normalize data for use in lookup tables.

Lookup tables are a very efficient way to write computationally-intense
functions for fixed-point embedded devices. For example, you can efficiently
implement logarithm, sine, cosine, tangent, and square-root using lookup
tables. You normalize the inputs to these functions to produce a smaller
lookup table, and then you scale the outputs by the normalization factor. This
example shows how to implement the normalization function that is used
in examples Implement Fixed-Point Square Root Using Lookup Table and
Implement Fixed-Point Log2 Using Lookup Table.

Setup

To assure that this example does not change your preferences or settings, this
code stores the original state, and you will restore it at the end.

originalFormat = get(0, 'format'); format long g
originalWarningState = warning('off','fixed:fi:underflow');
originalFiprefState = fipref; reset(fipref)

Function to Normalize Unsigned Data

This algorithm normalizes unsigned data with 8-bit words. Given input u >
0, the output x is normalized such that

u = x * 2^n

where 1 <= x < 2 and n is an integer. Note that n may be positive, negative,
or zero.

Function fi_normalize_unsigned_8_bit_word looks at the 8
most-significant-bits of the input at a time, and left shifts the bits until the
most-significant bit is a 1. The number of bits to shift for each 8-bit word is
read from the number-of-leading-zeros lookup table, NLZLUT.

function [x,n] = fi_normalize_unsigned_8_bit_word(u) %#codegen
assert(isscalar(u),'Input must be scalar');
assert(all(u>0),'Input must be positive.');

3-199

3 Fixed-Point Topics

assert(isfi(u) && isfixed(u),'Input must be a fi object with fixed-poin
u = removefimath(u);
NLZLUT = number_of_leading_zeros_look_up_table();
word_length = u.WordLength;
u_fraction_length = u.FractionLength;
B = 8;
leftshifts=int8(0);
% Reinterpret the input as an unsigned integer.
T_unsigned_integer = numerictype(0, word_length, 0);
v = reinterpretcast(u,T_unsigned_integer);
F = fimath('OverflowAction','Wrap',...

'RoundingMethod','Floor',...
'SumMode','KeepLSB',...
'SumWordLength',v.WordLength);

v = setfimath(v,F);
% Unroll the loop in generated code so there will be no branching.
for k = coder.unroll(1:ceil(word_length/B))

% For each iteration, see how many leading zeros are in the high
% byte of V, and shift them out to the left. Continue with the
% shifted V for as many bytes as it has.
%
% The index is the high byte of the input plus 1 to make it a
% one-based index.
index = int32(bitsra(v, word_length - B) + uint8(1));
% Index into the number-of-leading-zeros lookup table. This lookup
% table takes in a byte and returns the number of leading zeros in
% binary representation.
shiftamount = NLZLUT(index);
% Left-shift out all the leading zeros in the high byte.
v = bitsll(v,shiftamount);
% Update the total number of left-shifts
leftshifts = leftshifts+shiftamount;

end
% The input has been left-shifted so the most-significant-bit is a 1.
% Reinterpret the output as unsigned with one integer bit, so
% that 1 <= x < 2.
T_x = numerictype(0,word_length,word_length-1);
x = reinterpretcast(v, T_x);
x = removefimath(x);
% Let Q = int(u). Then u = Q*2^(-u_fraction_length),

3-200

Normalize Data for Lookup Tables

% and x = Q*2^leftshifts * 2^(1-word_length). Therefore,
% u = x*2^n, where n is defined as:
n = word_length - u_fraction_length - leftshifts - 1;

end

Number-of-Leading-Zeros Lookup Table

Function number_of_leading_zeros_look_up_table is used by
fi_normalize_unsigned_8_bit_word and returns a table of the number
of leading zero bits in an 8-bit word.

The first element of NLZLUT is 8 and corresponds to u=0. In 8-bit value u =
00000000_2, where subscript 2 indicates base-2, there are 8 leading zero bits.

The second element of NLZLUT is 7 and corresponds to u=1. There are 7
leading zero bits in 8-bit value u = 00000001_2.

And so forth, until the last element of NLZLUT is 0 and corresponds to u=255.
There are 0 leading zero bits in the 8-bit value u=11111111_2.

The NLZLUT table was generated by:

>> B = 8; % Number of bits in a byte
>> NLZLUT = int8(B-ceil(log2((1:2^B))))

function NLZLUT = number_of_leading_zeros_look_up_table()
% B = 8; % Number of bits in a byte
% NLZLUT = int8(B-ceil(log2((1:2^B))))

NLZLUT = int8([8 7 6 6 5 5 5 5 ...
4 4 4 4 4 4 4 4 ...
3 3 3 3 3 3 3 3 ...
3 3 3 3 3 3 3 3 ...
2 2 2 2 2 2 2 2 ...
2 2 2 2 2 2 2 2 ...
2 2 2 2 2 2 2 2 ...
2 2 2 2 2 2 2 2 ...
1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...

3-201

3 Fixed-Point Topics

1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...
1 1 1 1 1 1 1 1 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 0]);

end

Example

For example, let

u = fi(0.3, 1, 16, 8);

In binary, u = 00000000.01001101_2 = 0.30078125 (the fixed-point value is
not exactly 0.3 because of roundoff to 8 bits). The goal is to normalize such that

u = 1.001101000000000_2 * 2^(-2) = x * 2^n.

Start with u represented as an unsigned integer.

High byte Low byte
00000000 01001101 Start: u as unsigned integer.

3-202

Normalize Data for Lookup Tables

The high byte is 0 = 00000000_2. Add 1 to make an index out of it: index
= 0 + 1 = 1. The number-of-leading-zeros lookup table at index 1 indicates
that there are 8 leading zeros: NLZLUT(1) = 8. Left shift by this many bits.

High byte Low byte
01001101 00000000 Left-shifted by 8 bits.

Iterate once more to remove the leading zeros from the next byte.

The high byte is 77 = 01001101_2. Add 1 to make an index out of it: index =
77 + 1 = 78. The number-of-leading-zeros lookup table at index 78 indicates
that there is 1 leading zero: NLZLUT(78) = 1. Left shift by this many bits.

High byte Low byte
100110100 0000000 Left-shifted by 1 additional bit, for a total of 9.

Reinterpret these bits as unsigned fixed-point with 15 fractional bits.

x = 1.001101000000000_2 = 1.203125

The value for n is the word-length of u, minus the fraction length of u, minus
the number of left shifts, minus 1.

n = 16 - 8 - 9 - 1 = -2.

And so your result is:

[x,n] = fi_normalize_unsigned_8_bit_word(u)

x =

1.203125

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16

FractionLength: 15

n =

-2

3-203

3 Fixed-Point Topics

Comparing binary values, you can see that x has the same bits as u,
left-shifted by 9 bits.

binary_representation_of_u = bin(u)
binary_representation_of_x = bin(x)

binary_representation_of_u =

0000000001001101

binary_representation_of_x =

1001101000000000

Cleanup

Restore original state.

set(0, 'format', originalFormat);
warning(originalWarningState);
fipref(originalFiprefState);

3-204

Implement Fixed-Point Log2 Using Lookup Table

Implement Fixed-Point Log2 Using Lookup Table
This example shows how to implement fixed-point log2 using a lookup table.
Lookup tables generate efficient code for embedded devices.

Setup

To assure that this example does not change your preferences or settings, this
code stores the original state, and you will restore it at the end.

originalFormat = get(0, 'format'); format long g
originalWarningState = warning('off','fixed:fi:underflow');
originalFiprefState = fipref; reset(fipref)

Log2 Implementation

The log2 algorithm is summarized here.

1 Declare the number of bits in a byte, B, as a constant. In this example, B=8.

2 Use function fi_normalize_unsigned_8_bit_word() described in example
Normalize Data for Lookup Tables to normalize the input u>0 such that u
= x * 2^n and 1 <= x < 2.

3 Extract the upper B-bits of x. Let x_B denote the upper B-bits of x.

4 Generate lookup table, LOG2LUT, such that the integer i = uint8(x_B)-
2^(B-1) + 1 is used as an index to LOG2LUT so that log2(x_B) can be
evaluated by looking up the index log2(x_B) = LOG2LUT(i).

5 Use the remainder, r = x - x_B, interpreted as a fraction, to linearly
interpolate between LOG2LUT(i) and the next value in the table
LOG2LUT(i+1). The remainder, r, is created by extracting the lower w -
B bits of x, where w denotes the word length of x. It is interpreted as a
fraction by using function reinterpretcast().

6 Finally, compute the output using the lookup table and linear interpolation:

log2(u) = log2(x * 2^n)
= n + log2(x)

3-205

3 Fixed-Point Topics

= n + LOG2LUT(i) + r * (LOG2LUT(i+1) - LOG2LUT(i))

function y = fi_log2lookup_8_bit_word(u) %#codegen
% Load the lookup table
LOG2LUT = log2_lookup_table();
% Remove fimath from the input to insulate this function from math
% settings declared outside this function.
u = removefimath(u);
% Declare the output
y = eml.nullcopy(fi(zeros(size(u)), numerictype(LOG2LUT), fimath(LOG2LU
B = 8; % Number of bits in a byte
w = u.WordLength;
for k = 1:prod(size(u))

assert(u(k)>0,'Input must be positive.');
% Normalize the input such that u = x * 2^n and 1 <= x < 2
[x,n] = fi_normalize_unsigned_8_bit_word(u(k));
% Extract the high byte of x
high_byte = uint8(storedInteger(bitsliceget(x, w, w - B + 1)));
% Convert the high byte into an index for LOG2LUT
i = high_byte - 2^(B-1) + 1;
% Interpolate between points.
% The upper byte was used for the index into LOG2LUT
% The remaining bits make up the fraction between points.
T_unsigned_fraction = numerictype(0, w-B, w-B);
r = reinterpretcast(bitsliceget(x,w-B,1), T_unsigned_fraction);
y(k) = n + LOG2LUT(i) + ...

r*(LOG2LUT(i+1) - LOG2LUT(i)) ;
end
% Remove fimath from the output to insulate the caller from math settin
% declared inside this function.
y = removefimath(y);

end

Log2 Lookup Table

Function log2_lookup_table loads the lookup table of log2 values. You can
create the table by running:

B = 8;
log2_table = log2((2^(B-1) : 2^(B)) / 2^(B - 1))

3-206

Implement Fixed-Point Log2 Using Lookup Table

function LOG2LUT = log2_lookup_table()
B = 8; % Number of bits in a byte
% log2_table = log2((2^(B-1) : 2^(B)) / 2^(B - 1))
log2_table = [0.000000000000000 0.011227255423254 0.022367813028454

0.044394119358453 0.055282435501190 0.066089190457773
0.087462841250339 0.098032082960527 0.108524456778169
0.129283016944966 0.139551352398794 0.149747119504682
0.169925001442312 0.179909090014934 0.189824558880017
0.209453365628950 0.219168520462162 0.228818690495881
0.247927513443586 0.257387842692652 0.266786540694901
0.285402218862248 0.294620748891627 0.303780748177103
0.321928094887362 0.330916878114617 0.339850002884625
0.357552004618084 0.366322214245816 0.375039431346925
0.392317422778760 0.400879436282184 0.409390936137702
0.426264754702098 0.434628227636725 0.442943495848728
0.459431618637297 0.467605550082997 0.475733430966398
0.491853096329675 0.499845887083205 0.507794640198696
0.523561956057013 0.531381460516312 0.539158811108031
0.554588851677637 0.562242424221073 0.569855608330948
0.584962500721156 0.592457037268080 0.599912842187128
0.614709844115208 0.622051819456376 0.629356620079610
0.643856189774725 0.651051691178929 0.658211482751795
0.672425341971496 0.679480099505446 0.686500527183218
0.700439718141092 0.707359132080883 0.714245517666123
0.727920454563199 0.734709620225838 0.741466986401147
0.754887502163469 0.761551232444479 0.768184324776926
0.781359713524660 0.787902559391432 0.794415866350106
0.807354922057604 0.813781191217037 0.820178962415188
0.832890014164742 0.839203788096944 0.845490050944375
0.857980995127572 0.864186144654280 0.870364719583405
0.882643049361841 0.888743248898259 0.894817763307943
0.906890595608518 0.912889336229962 0.918863237274595
0.930737337562886 0.936637939002571 0.942514505339240
0.954196310386875 0.960001932068081 0.965784284662087
0.977279923499916 0.982993574694310 0.988684686772166
1.000000000000000];

% Cast to fixed point with the most accurate rounding method
WL = 4*B; % Word length

3-207

3 Fixed-Point Topics

FL = 2*B; % Fraction length
LOG2LUT = fi(log2_table,1,WL,FL,'RoundingMethod','Nearest');
% Set fimath for the most efficient math operations
F = fimath('OverflowAction','Wrap',...

'RoundingMethod','Floor',...
'SumMode','SpecifyPrecision',...
'SumWordLength',WL,...
'SumFractionLength',FL,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',WL,...
'ProductFractionLength',2*FL);

LOG2LUT = setfimath(LOG2LUT,F);
end

Example

u = fi(linspace(0.001,20,100));

y = fi_log2lookup_8_bit_word(u);

y_expected = log2(double(u));
%%3
clf
subplot(211)
plot(u,y,u,y_expected)
legend('Output','Expected output','Location','Best')

subplot(212)
plot(u,double(y)-y_expected,'r')
legend('Error')
figure(gcf)

3-208

Implement Fixed-Point Log2 Using Lookup Table

Cleanup

Restore original state.

set(0, 'format', originalFormat);
warning(originalWarningState);
fipref(originalFiprefState);

3-209

3 Fixed-Point Topics

Implement Fixed-Point Square Root Using Lookup Table
This example shows how to implement fixed-point square root using a lookup
table. Lookup tables generate efficient code for embedded devices.

Setup

To assure that this example does not change your preferences or settings, this
code stores the original state, and you will restore it at the end.

originalFormat = get(0, 'format'); format long g
originalWarningState = warning('off','fixed:fi:underflow');
originalFiprefState = fipref; reset(fipref)

Square Root Implementation

The square root algorithm is summarized here.

1 Declare the number of bits in a byte, B, as a constant. In this example, B=8.

2 Use function fi_normalize_unsigned_8_bit_word() described in example
Normalize Data for Lookup Tables to normalize the input u>0 such that u
= x * 2^n, 0.5 <= x < 2, and n is even.

3 Extract the upper B-bits of x. Let x_B denote the upper B-bits of x.

4 Generate lookup table, SQRTLUT, such that the integer i = uint8(x_B)-
2^(B-2) + 1 is used as an index to SQRTLUT so that sqrt(x_B) can be
evaluated by looking up the index sqrt(x_B) = SQRTLUT(i).

5 Use the remainder, r = x - x_B, interpreted as a fraction, to linearly
interpolate between SQRTLUT(i) and the next value in the table
SQRTLUT(i+1). The remainder, r, is created by extracting the lower w -
B bits of x, where w denotes the word-length of x. It is interpreted as a
fraction by using function reinterpretcast().

6 Finally, compute the output using the lookup table and linear interpolation:

sqrt(u) = sqrt(x * 2^n)
= sqrt(x) * 2^(n/2)

3-210

Implement Fixed-Point Square Root Using Lookup Table

= (SQRTLUT(i) + r * (SQRTLUT(i+1) - SQRTLUT(i))) * 2^(n

function y = fi_sqrtlookup_8_bit_word(u) %#codegen
% Load the lookup table
SQRTLUT = sqrt_lookup_table();
% Remove fimath from the input to insulate this function from math
% settings declared outside this function.
u = removefimath(u);
% Declare the output
y = coder.nullcopy(fi(zeros(size(u)), numerictype(SQRTLUT), fimath(SQRT
B = 8; % Number of bits in a byte
w = u.WordLength;
for k = 1:prod(size(u))

assert(u(k)>=0,'Input must be non-negative.');
if u(k)==0

y(k)=0;
else

% Normalize the input such that u = x * 2^n and 0.5 <= x < 2
[x,n] = fi_normalize_unsigned_8_bit_word(u(k));
isodd = int8(storedInteger(bitand(fi(1,1,8,0),fi(n))));
x = bitsra(x,isodd);
n = n + isodd;
% Extract the high byte of x
high_byte = uint8(storedInteger(bitsliceget(x, w, w - B + 1))
% Convert the high byte into an index for SQRTLUT
i = high_byte - 2^(B-2) + 1;
% The upper byte was used for the index into SQRTLUT.
% The remainder, r, interpreted as a fraction, is used to
% linearly interpolate between points.
T_unsigned_fraction = numerictype(0, w-B, w-B);
r = reinterpretcast(bitsliceget(x,w-B,1), T_unsigned_fraction);
y(k) = bitshift((SQRTLUT(i) + r*(SQRTLUT(i+1) - SQRTLUT(i))),..

bitsra(n,1));
end

end
% Remove fimath from the output to insulate the caller from math settin
% declared inside this function.
y = removefimath(y);

end

3-211

3 Fixed-Point Topics

Square Root Lookup Table

Function sqrt_lookup_table loads the lookup table of square-root values.
You can create the table by running:

sqrt_table = sqrt((2^(B-2):2^(B))/2^(B-1));

function SQRTLUT = sqrt_lookup_table()
B = 8; % Number of bits in a byte
% sqrt_table = sqrt((2^(B-2):2^(B))/2^(B-1))
sqrt_table = [0.707106781186548 0.712609640686961 0.718070330817254

0.728868986855663 0.734208757779421 0.739509972887452
0.750000000000000 0.755190373349661 0.760345316287277
0.770551750371122 0.775604602874429 0.780624749799800
0.790569415042095 0.795495128834866 0.800390529679106
0.810092587300983 0.814900300650331 0.819679815537750
0.829156197588850 0.833854004007896 0.838525491562421
0.847791247890659 0.852386356061616 0.856956825050130
0.866025403784439 0.870524267324007 0.875000000000000
0.883883476483184 0.888291900221993 0.892678553567856
0.901387818865997 0.905711046636840 0.910013736160065
0.918558653543692 0.922801441264588 0.927024810886958
0.935414346693485 0.939581023648307 0.943729304408844
0.951971638232989 0.956066158798647 0.960143218483576
0.968245836551854 0.972271824131503 0.976281209488332
0.984250984251476 0.988211768802619 0.992156741649222
1.000000000000000 1.003898650263063 1.007782218537319
1.015504800579495 1.019344151893756 1.023169096484056
1.030776406404415 1.034559084827928 1.038327982864759
1.045825033167594 1.049553476484167 1.053268721647045
1.060660171779821 1.064336647870400 1.068000468164691
1.075290658380328 1.078917281352004 1.082531754730548
1.089724735885168 1.093303480283494 1.096870548424015
1.103970108290981 1.107502821666834 1.111024302164449
1.118033988749895 1.121522402807898 1.125000000000000
1.131923142267177 1.135368882786559 1.138804197393037
1.145643923738960 1.149048519428140 1.152443057161611
1.159202311936963 1.162567202358642 1.165922381636102
1.172603939955857 1.175930482639174 1.179247641507075
1.185854122563142 1.189143599402528 1.192424001771182

3-212

Implement Fixed-Point Square Root Using Lookup Table

1.198957880828180 1.202211503854459 1.205456345124119
1.211919964354082 1.215138880951474 1.218349293101120
1.224744871391589 1.227930169024281 1.231107225224513
1.237436867076458 1.240589577579950 1.243734296383275
1.250000000000000 1.253121103485214 1.256234452640111
1.262438117295260 1.265528545707287 1.268611445636527
1.274754878398196 1.277815518766305 1.280868845744950
1.286953767623375 1.289985465034393 1.293010054098575
1.299038105676658 1.302041665999979 1.305038313613819
1.311011060212689 1.313987252601790 1.316956719106592
1.322875655532295 1.325825214724777 1.328768226591831
1.334634781503914 1.337558409939543 1.340475661845451
1.346291201783626 1.349189571557681 1.352081728298996
1.357847561400027 1.360721316067327 1.363589014329464
1.369306393762915 1.372156150006259 1.375000000000000
1.380670127148408 1.383496476323666 1.386317063301177
1.391941090707505 1.394744600276337 1.397542485937369
1.403121520040228 1.405902734900249 1.408678458698081
1.414213562373095];

% Cast to fixed point with the most accurate rounding method
WL = 4*B; % Word length
FL = 2*B; % Fraction length
SQRTLUT = fi(sqrt_table, 1, WL, FL, 'RoundingMethod','Nearest');
% Set fimath for the most efficient math operations
F = fimath('OverflowAction','Wrap',...

'RoundingMethod','Floor',...
'SumMode','KeepLSB',...
'SumWordLength',WL,...
'ProductMode','KeepLSB',...
'ProductWordLength',WL);

SQRTLUT = setfimath(SQRTLUT, F);
end

Example

u = fi(linspace(0,128,1000),0,16,12);

y = fi_sqrtlookup_8_bit_word(u);

y_expected = sqrt(double(u));

3-213

3 Fixed-Point Topics

clf
subplot(211)
plot(u,y,u,y_expected)
legend('Output','Expected output','Location','Best')

subplot(212)
plot(u,double(y)-y_expected,'r')
legend('Error')
figure(gcf)

Cleanup

Restore original state.

set(0, 'format', originalFormat);
warning(originalWarningState);
fipref(originalFiprefState);

3-214

Set Fixed-Point Math Attributes

Set Fixed-Point Math Attributes
This example shows how to set fixed point math attributes in MATLAB code.

You can control fixed-point math attributes for assignment, addition,
subtraction, and multiplication using the fimath object. You can attach a
fimath object to a fi object using setfimath. You can remove a fimath object
from a fi object using removefimath.

You can generate C code from the examples if you have MATLAB Coder™
software.

Set and Remove Fixed Point Math Attributes

You can write functions that control their own fixed-point math attributes
without being affected by globalfimath and fimath objects attached to input
variables. You can also return from functions with no fimath attached to
output variables. This gives you local control over fixed-point math settings
without interfering with the settings in other functions.

MATLAB Code

function y = user_written_sum(u)
% Setup
F = fimath('RoundingMethod','Floor',...

'OverflowAction','Wrap',...
'SumMode','KeepLSB',...
'SumWordLength',32);

u = setfimath(u,F);
y = fi(0,true,32,get(u,'FractionLength'),F);
% Algorithm
for i=1:length(u)

y(:) = y + u(i);
end
% Cleanup
y = removefimath(y);

end

Output has no Attached FIMATH

3-215

3 Fixed-Point Topics

When you run the code, the fimath controls the arithmetic inside the
function, but the return value has no attached fimath. This is due to the use
of setfimath and removefimath inside the function user_written_sum.

>> u = fi(1:10,true,16,11);
>> y = user_written_sum(u)

y =
55

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 11

Generated C Code

If you have MATLAB Coder software, you can generate C code using the
following commands.

>> u = fi(1:10,true,16,11);
>> codegen user_written_sum -args {u} -config:lib -launchreport

Functions fimath, setfimath and removefimath control the fixed-point
math, but the underlying data contained in the variables does not change and
so the generated C code does not produce any data copies.

int32_T user_written_sum(const int16_T u[10])
{

int32_T y;
int32_T i;
/* Setup */
y = 0;
/* Algorithm */
for (i = 0; i < 10; i++) {

y += u[i];
}
/* Cleanup */
return y;

}

Mismatched FIMATH

3-216

Set Fixed-Point Math Attributes

When you operate on fi objects, their fimath properties must be equal, or
you get an error.

>> A = fi(pi,'ProductMode','KeepLSB');
>> B = fi(2,'ProductMode','SpecifyPrecision');
>> C = A * B

Error using embedded.fi/mtimes
The embedded.fimath of both operands must be equal.

To avoid this error, you can remove fimath from one of the variables in the
expression. In this example, the fimath is removed from B in the context of
the expression without modifying B itself, and the product is computed using
the fimath attached to A.

>> C = A * removefimath(B)

C =

6.283203125

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 26

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: KeepLSB
ProductWordLength: 32

SumMode: FullPrecision

Changing FIMATH on Temporary Variables

If you have variables with no attached fimath, but you want to control a
particular operation, then you can attach a fimath in the context of the
expression without modifying the variables.

For example, the product is computed with the fimath defined by F.

>> F = fimath('ProductMode','KeepLSB','OverflowAction','Wrap','RoundingMeth

3-217

3 Fixed-Point Topics

>> A = fi(pi);
>> B = fi(2);
>> C = A * setfimath(B,F)

C =

6.2832

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 26

RoundingMethod: Floor
OverflowAction: Wrap

ProductMode: KeepLSB
ProductWordLength: 32

SumMode: FullPrecision
MaxSumWordLength: 128

Note that variable B is not changed.

>> B

B =

2

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

Removing FIMATH Conflict in a Loop

You can compute products and sums to match the accumulator of a DSP with
floor rounding and wrap overflow, and use nearest rounding and saturate
overflow on the output. To avoid mismatched fimath errors, you can remove
the fimath on the output variable when it is used in a computation with the
other variables.

3-218

Set Fixed-Point Math Attributes

MATLAB Code

In this example, the products are 32-bits, and the accumulator is 40-bits,
keeping the least-significant-bits with floor rounding and wrap overflow like
C’s native integer rules. The output uses nearest rounding and saturate
overflow.

function [y,z] = setfimath_removefimath_in_a_loop(b,a,x,z)
% Setup
F_floor = fimath('RoundingMethod','Floor',...

'OverflowAction','Wrap',...
'ProductMode','KeepLSB',...
'ProductWordLength',32,...
'SumMode','KeepLSB',...
'SumWordLength',40);

F_nearest = fimath('RoundingMethod','Nearest',...
'OverflowAction','Wrap');

% Set fimaths that are local to this function
b = setfimath(b,F_floor);
a = setfimath(a,F_floor);
x = setfimath(x,F_floor);
z = setfimath(z,F_floor);
% Create y with nearest rounding
y = coder.nullcopy(fi(zeros(size(x)),true,16,14,F_nearest));
% Algorithm
for j=1:length(x)

% Nearest assignment into y
y(j) = b(1)*x(j) + z(1);
% Remove y's fimath conflict with other fimaths
z(1) = (b(2)*x(j) + z(2)) - a(2) * removefimath(y(j));
z(2) = b(3)*x(j) - a(3) * removefimath(y(j));

end
% Cleanup: Remove fimath from outputs
y = removefimath(y);
z = removefimath(z);

end

Code Generation Instructions

3-219

3 Fixed-Point Topics

If you have MATLAB Coder software, you can generate C code with the
specificed hardware characteristics using the following commands.

N = 256;
t = 1:N;
xstep = [ones(N/2,1);-ones(N/2,1)];
num = [0.0299545822080925 0.0599091644161849 0.0299545822080925];
den = [1 -1.4542435862515900 0.5740619150839550];

b = fi(num,true,16);
a = fi(den,true,16);
x = fi(xstep,true,16,15);
zi = fi(zeros(2,1),true,16,14);

B = coder.Constant(b);
A = coder.Constant(a);

config_obj = coder.config('lib');
config_obj.GenerateReport = true;
config_obj.LaunchReport = true;
config_obj.TargetLang = 'C';
config_obj.GenerateComments = true;
config_obj.GenCodeOnly = true;
config_obj.HardwareImplementation.ProdBitPerChar=8;
config_obj.HardwareImplementation.ProdBitPerShort=16;
config_obj.HardwareImplementation.ProdBitPerInt=32;
config_obj.HardwareImplementation.ProdBitPerLong=40;

codegen -config config_obj setfimath_removefimath_in_a_loop -args {B,A,x,zi

Generated C Code

Functions fimath, setfimath and removefimath control the fixed-point
math, but the underlying data contained in the variables does not change and
so the generated C code does not produce any data copies.

void setfimath_removefimath_in_a_loop(const int16_T x[256], int16_T z[2],
int16_T y[256])

{
int32_T j;

3-220

Set Fixed-Point Math Attributes

int40_T i0;
int16_T b_y;

/* Setup */
/* Set fimaths that are local to this function */
/* Create y with nearest rounding */
/* Algorithm */
for (j = 0; j < 256; j++) {

/* Nearest assignment into y */
i0 = 15705 * x[j] + ((int40_T)z[0] << 20);
b_y = (int16_T)((int32_T)(i0 >> 20) + ((i0 & 524288L) != 0L));

/* Remove y's fimath conflict with other fimaths */
z[0] = (int16_T)(((31410 * x[j] + ((int40_T)z[1] << 20)) - ((int40_T)(-

* b_y) << 6)) >> 20);
z[1] = (int16_T)((15705 * x[j] - ((int40_T)(9405 * b_y) << 6)) >> 20);
y[j] = b_y;

}

/* Cleanup: Remove fimath from outputs */
}

Polymorphic Code

You can write MATLAB code that can be used for both floating-point and
fixed-point types using setfimath and removefimath.

function y = user_written_function(u)
% Setup
F = fimath('RoundingMethod','Floor',...

'OverflowAction','Wrap',...
'SumMode','KeepLSB');

u = setfimath(u,F);
% Algorithm
y = u + u;
% Cleanup
y = removefimath(y);

end

Fixed Point Inputs

3-221

3 Fixed-Point Topics

When the function is called with fixed-point inputs, then fimath F is used for
the arithmetic, and the output has no attached fimath.

>> u = fi(pi/8,true,16,15,'RoundingMethod','Convergent');
>> y = user_written_function(u)

y =

0.785400390625

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 15

Generated C Code for Fixed Point

If you have MATLAB Coder software, you can generate C code using the
following commands.

>> u = fi(pi/8,true,16,15,'RoundingMethod','Convergent');
>> codegen user_written_function -args {u} -config:lib -launchreport

Functions fimath, setfimath and removefimath control the fixed-point
math, but the underlying data contained in the variables does not change and
so the generated C code does not produce any data copies.

int32_T user_written_function(int16_T u)
{

/* Setup */
/* Algorithm */
/* Cleanup */
return u + u;

}

Double Inputs

Since setfimath and removefimath are pass-through for floating-point types,
the user_written_function example works with floating-point types, too.

function y = user_written_function(u)

3-222

Set Fixed-Point Math Attributes

% Setup
F = fimath('RoundingMethod','Floor',...

'OverflowAction','Wrap',...
'SumMode','KeepLSB');

u = setfimath(u,F);
% Algorithm
y = u + u;
% Cleanup
y = removefimath(y);

end

Generated C Code for Double

When compiled with floating-point input, you get the following generated
C code.

>> codegen user_written_function -args {0} -config:lib -launchreport

real_T user_written_function(real_T u)
{

return u + u;
}

Where the real_T type is defined as a double:

typedef double real_T;

More Polymorphic Code

This function is written so that the output is created to be the same type as
the input, so both floating-point and fixed-point can be used with it.

function y = user_written_sum_polymorphic(u)
% Setup
F = fimath('RoundingMethod','Floor',...

'OverflowAction','Wrap',...
'SumMode','KeepLSB',...
'SumWordLength',32);

u = setfimath(u,F);

3-223

3 Fixed-Point Topics

if isfi(u)
y = fi(0,true,32,get(u,'FractionLength'),F);

else
y = zeros(1,1,class(u));

end

% Algorithm
for i=1:length(u)

y(:) = y + u(i);
end

% Cleanup
y = removefimath(y);

end

Fixed Point Generated C Code

If you have MATLAB Coder software, you can generate fixed-point C code
using the following commands.

>> u = fi(1:10,true,16,11);
>> codegen user_written_sum_polymorphic -args {u} -config:lib -launchreport

Functions fimath, setfimath and removefimath control the fixed-point
math, but the underlying data contained in the variables does not change and
so the generated C code does not produce any data copies.

int32_T user_written_sum_polymorphic(const int16_T u[10])
{

int32_T y;
int32_T i;

/* Setup */
y = 0;

/* Algorithm */
for (i = 0; i < 10; i++) {

y += u[i];
}

3-224

Set Fixed-Point Math Attributes

/* Cleanup */
return y;

}

Floating Point Generated C Code

If you have MATLAB Coder software, you can generate floating-point C code
using the following commands.

>> u = 1:10;
>> codegen user_written_sum_polymorphic -args {u} -config:lib -launchreport

real_T user_written_sum_polymorphic(const real_T u[10])
{

real_T y;
int32_T i;

/* Setup */
y = 0.0;

/* Algorithm */
for (i = 0; i < 10; i++) {

y += u[i];
}

/* Cleanup */
return y;

}

Where the real_T type is defined as a double:

typedef double real_T;

SETFIMATH on Integer Types

Following the established pattern of treating built-in integers like fi objects,
setfimath converts integer input to the equivalent fi with attached fimath.

>> u = int8(5);
>> codegen user_written_u_plus_u -args {u} -config:lib -launchreport

function y = user_written_u_plus_u(u)

3-225

3 Fixed-Point Topics

% Setup
F = fimath('RoundingMethod','Floor',...

'OverflowAction','Wrap',...
'SumMode','KeepLSB',...
'SumWordLength',32);

u = setfimath(u,F);
% Algorithm
y = u + u;
% Cleanup
y = removefimath(y);

end

The output type was specified by the fimath to be 32-bit.

int32_T user_written_u_plus_u(int8_T u)
{

/* Setup */
/* Algorithm */
/* Cleanup */
return u + u;

}

3-226

4

Working with fimath
Objects

• “fimath Object Construction” on page 4-2

• “fimath Object Properties” on page 4-6

• “fimath Properties Usage for Fixed-Point Arithmetic” on page 4-11

• “fimath for Rounding and Overflow Modes” on page 4-20

• “fimath for Sharing Arithmetic Rules” on page 4-22

• “fimath ProductMode and SumMode” on page 4-25

4 Working with fimath Objects

fimath Object Construction

In this section...

“fimath Object Syntaxes” on page 4-2

“Building fimath Object Constructors in a GUI” on page 4-4

fimath Object Syntaxes
The arithmetic attributes of a fi object are defined by a local fimath object,
which is attached to that fi object. If a fi object has no local fimath, the
following default fimath values are used:

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

You can create fimath objects in Fixed-Point Toolbox software in one of two
ways:

• You can use the fimath constructor function to create new fimath objects.

• You can use the fimath constructor function to copy an existing fimath
object.

To get started, type

F = fimath

to create a fimath object.

F =

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

To copy a fimath object, simply use assignment as in the following example:

4-2

fimath Object Construction

F = fimath;
G = F;
isequal(F,G)

ans =

1

4-3

4 Working with fimath Objects

The syntax

F = fimath(...'PropertyName',PropertyValue...)

allows you to set properties for a fimath object at object creation with
property name/property value pairs. Refer to “Setting fimath Properties at
Object Creation” on page 4-7.

Building fimath Object Constructors in a GUI
When you are working with files in MATLAB, you can build your fimath
object constructors using the Insert fimath Constructor dialog box. After
specifying the properties of the fimath object in the dialog box, you can insert
the prepopulated fimath object constructor string at a specific location in
your file.

For example, to create a fimath object that uses convergent rounding and
wraps on overflow, perform the following steps:

1 On the Home tab, in the File section, click New > Script to open the
MATLAB Editor

2 On the Editor tab, in the Edit section, click in the Insert button
group. Click the Insert fimath... to open the Insert fimath Constructor
dialog box.

3 Use the edit boxes and drop-down menus to specify the following properties
of the fimath object:

• Rounding method = Floor

• Overflow action = Wrap

• Product mode = FullPrecision

• Sum mode = FullPrecision

4-4

fimath Object Construction

4 To insert the fimath object constructor string in your file, place your
cursor at the desired location in the file. Then click OK on the Insert
fimath Constructor dialog box. Clicking OK closes the Insert fimath
Constructor dialog box and automatically populates the fimath object
constructor string in your file:

4-5

4 Working with fimath Objects

fimath Object Properties

In this section...

“Math, Rounding, and Overflow Properties” on page 4-6

“Setting fimath Object Properties” on page 4-7

Math, Rounding, and Overflow Properties
You can always write to the following properties of fimath objects:

Property Description

CastBeforeSum Whether both operands are cast to
the sum data type before addition

MaxProductWordLength Maximum allowable word length for
the product data type

MaxSumWordLength Maximum allowable word length for
the sum data type

OverflowAction Action to take on overflow

ProductBias Bias of the product data type

ProductFixedExponent Fixed exponent of the product data
type

ProductFractionLength Fraction length, in bits, of the
product data type

ProductMode Defines how the product data type
is determined

ProductSlope Slope of the product data type

ProductSlopeAdjustmentFactor Slope adjustment factor of the
product data type

ProductWordLength Word length, in bits, of the product
data type

RoundingMethod Rounding method

4-6

fimath Object Properties

Property Description

SumBias Bias of the sum data type

SumFixedExponent Fixed exponent of the sum data type

SumFractionLength Fraction length, in bits, of the sum
data type

SumMode Defines how the sum data type is
determined

SumSlope Slope of the sum data type

SumSlopeAdjustmentFactor Slope adjustment factor of the sum
data type

SumWordLength Word length, in bits, of the sum data
type

For details about these properties, refer to the “fi Object Properties” on page
2-17. To learn how to specify properties for fimath objects in Fixed-Point
Toolbox software, refer to “Setting fimath Object Properties” on page 4-7.

Setting fimath Object Properties

• “Setting fimath Properties at Object Creation” on page 4-7

• “Using Direct Property Referencing with fimath” on page 4-8

• “Setting fimath Properties in the Model Explorer” on page 4-8

Setting fimath Properties at Object Creation
You can set properties of fimath objects at the time of object creation by
including properties after the arguments of the fimath constructor function.

For example, to set the overflow action to Saturate and the rounding method
to Convergent,

F = fimath('OverflowAction','Saturate','RoundingMethod','Convergent')

F =

4-7

4 Working with fimath Objects

RoundingMethod: Convergent
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: FullPrecision

Using Direct Property Referencing with fimath
You can reference directly into a property for setting or retrieving fimath
object property values using MATLAB structure-like referencing. You do so
by using a period to index into a property by name.

For example, to get the RoundingMethod of F,

F.RoundingMethod

ans =

Convergent

To set the OverflowAction of F,

F.OverflowAction = 'Wrap'

F =

RoundingMethod: Convergent
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

Setting fimath Properties in the Model Explorer
You can view and change the properties for any fimath object defined in
the MATLAB workspace in the Model Explorer. Open the Model Explorer
by selecting View > Model Explorer in any Simulink model, or by typing
daexplr at the MATLAB command line.

4-8

fimath Object Properties

The following figure shows the Model Explorer when you define the following
fimath objects in the MATLAB workspace:

F = fimath

F =

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: FullPrecision

G = fimath('OverflowAction','Wrap')

G =

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

Select the Base Workspace node in theModel Hierarchy pane to view the
current objects in the Contents pane. When you select a fimath object in the
Contents pane, you can view and change its properties in the Dialog pane.

4-9

4 Working with fimath Objects

For more information on working with the Model Explorer, see the following
sections of the Fixed-Point Toolbox documentation:

• “Specifying Fixed-Point Parameters in the Model Explorer” on page 8-77

• “Sharing Models with Fixed-Point MATLAB Function Blocks” on page 8-81

4-10

fimath Properties Usage for Fixed-Point Arithmetic

fimath Properties Usage for Fixed-Point Arithmetic

In this section...

“fimath Rules for Fixed-Point Arithmetic” on page 4-11

“Binary-Point Arithmetic” on page 4-13

“[Slope Bias] Arithmetic” on page 4-17

fimath Rules for Fixed-Point Arithmetic
fimath properties define the rules for performing arithmetic operations on fi
objects. The fimath properties that govern fixed-point arithmetic operations
can come from a local fimath object or the fimath default values.

To determine whether a fi object has a local fimath object, use the
isfimathlocal function.

The following sections discuss how fi objects with local fimath objects
interact with fi objects without local fimath.

Binary Operations
In binary fixed-point operations such as c = a + b, the following rules apply:

• If both a and b have no local fimath, the operation uses default fimath
values to perform the fixed-point arithmetic. The output fi object c also
has no local fimath.

• If either a or b has a local fimath object, the operation uses that fimath
object to perform the fixed-point arithmetic. The output fi object c has the
same local fimath object as the input.

Unary Operations
In unary fixed-point operations such as b = abs(a), the following rules apply:

• If a has no local fimath, the operation uses default fimath values to perform
the fixed-point arithmetic. The output fi object b has no local fimath.

4-11

4 Working with fimath Objects

• If a has a local fimath object, the operation uses that fimath object to
perform the fixed-point arithmetic. The output fi object b has the same
local fimath object as the input a.

When you specify a fimath object in the function call of a unary fixed-point
operation, the operation uses the fimath object you specify to perform the
fixed-point arithmetic. For example, when you use a syntax such as b =
abs(a,F) or b = sqrt(a,F), the abs and sqrt operations use the fimath
object F to compute intermediate quantities. The output fi object b always
has no local fimath.

Concatenation Operations
In fixed-point concatenation operations such as c = [a b], c = [a;b] and
c = bitconcat(a,b), the following rule applies:

• The fimath properties of the left-most fi object in the operation determine
the fimath properties of the output fi object c.

For example, consider the following scenarios for the operation d = [a b c]:

• If a is a fi object with no local fimath, the output fi object d also has no
local fimath.

• If a has a local fimath object, the output fi object d has the same local
fimath object.

• If a is not a fi object, the output fi object d inherits the fimath properties
of the next left-most fi object. For example, if b is a fi object with a local
fimath object, the output fi object d has the same local fimath object as
the input fi object b.

fimath Object Operations: add, mpy, sub
The output of the fimath object operations add, mpy, and sub always have no
local fimath. The operations use the fimath object you specify in the function
call, but the output fi object never has a local fimath object.

MATLAB Function Block Operations
Fixed-point operations performed with the MATLAB Function block use the
same rules as fixed-point operations performed in MATLAB.

4-12

fimath Properties Usage for Fixed-Point Arithmetic

All input signals to the MATLAB Function block that you treat as fi objects
associate with whatever you specify for the MATLAB Function block
fimath parameter. When you set this parameter to Same as MATLAB, your
fi objects do not have local fimath. When you set the MATLAB Function
block fimath parameter to Specify other, you can define your own set
of fimath properties for all fi objects in the MATLAB Function block to
associate with. You can choose to treat only fixed-point input signals as fi
objects or both fixed-point and integer input signals as fi objects. See “Using
fimath Objects in MATLAB Function Blocks” on page 8-79.

Binary-Point Arithmetic
The fimath object encapsulates the math properties of Fixed-Point Toolbox
software.

fi objects only have a local fimath object when you explicitly specify fimath
properties in the fi constructor. When you use the sfi or ufi constructor or
do not specify any fimath properties in the fi constructor, the resulting fi
object does not have any local fimath and uses default fimath values.

a = fi(pi)

a =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

a.fimath
isfimathlocal(a)

ans =

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: FullPrecision

4-13

4 Working with fimath Objects

ans =
0

To perform arithmetic with +, -, .*, or * on two fi operands with local fimath
objects, the local fimath objects must be identical. If one of the fi operands
does not have a local fimath, the fimath properties of the two operands need
not be identical. See “fimath Rules for Fixed-Point Arithmetic” on page 4-11
for more information.

a = fi(pi);
b = fi(8);
isequal(a.fimath, b.fimath)

ans =

1

a + b

ans =

11.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 19

FractionLength: 13

To perform arithmetic with +, -, .*, or *, two fi operands must also have the
same data type. For example, you can perform addition on two fi objects
with data type double, but not on an object with data type double and one
with data type single:

a = fi(3, 'DataType', 'double')

a =

3

4-14

fimath Properties Usage for Fixed-Point Arithmetic

DataTypeMode: Double

b = fi(27, 'DataType', 'double')

b =

27

DataTypeMode: Double

a + b

ans =

30

DataTypeMode: Double

c = fi(12, 'DataType', 'single')

c =

12

DataTypeMode: Single

a + c
??? Math operations are not allowed on FI objects with

different data types.

Fixed-point fi object operands do not have to have the same scaling. You can
perform binary math operations on a fi object with a fixed-point data type
and a fi object with a scaled doubles data type. In this sense, the scaled
double data type acts as a fixed-point data type:

a = fi(pi)

a =

3.1416

4-15

4 Working with fimath Objects

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

b = fi(magic(2), ...
'DataTypeMode', 'Scaled double: binary point scaling')

b =

1 3
4 2

DataTypeMode: Scaled double: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 12

a + b

ans =

4.1416 6.1416
7.1416 5.1416

DataTypeMode: Scaled double: binary point scaling
Signedness: Signed
WordLength: 18

FractionLength: 13

Use the divide function to perform division with doubles, singles, or binary
point-only scaling fi objects.

4-16

fimath Properties Usage for Fixed-Point Arithmetic

[Slope Bias] Arithmetic
Fixed-Point Toolbox software supports fixed-point arithmetic using the
local fimath object or default fimath for all binary point-only signals. The
toolbox also supports arithmetic for [Slope Bias] signals with the following
restrictions:

• [Slope Bias] signals must be real.

• You must set the SumMode and ProductMode properties of the governing
fimath to 'SpecifyPrecision' for sum and multiply operations,
respectively.

• You must set the CastBeforeSum property of the governing fimath to
'true'.

• Fixed-Point Toolbox does not support the divide function for [Slope Bias]
signals.

f = fimath('SumMode', 'SpecifyPrecision', ...
'SumFractionLength', 16)

f =

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: SpecifyPrecision

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

a = fi(pi, 'fimath', f)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

4-17

4 Working with fimath Objects

FractionLength: 13

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: SpecifyPrecision

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

b = fi(22, true, 16, 2^-8, 3, 'fimath', f)

b =

22

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 0.00390625
Bias: 3

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: SpecifyPrecision

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

a + b

ans =

25.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 16

4-18

fimath Properties Usage for Fixed-Point Arithmetic

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: SpecifyPrecision

SumWordLength: 32
SumFractionLength: 16

CastBeforeSum: true

Setting the SumMode and ProductMode properties to SpecifyPrecision are
mutually exclusive except when performing the * operation between matrices.
In this case, you must set both the SumMode and ProductMode properties to
SpecifyPrecision for [Slope Bias] signals. Doing so is necessary because the
* operation performs both sum and multiply operations to calculate the result.

4-19

4 Working with fimath Objects

fimath for Rounding and Overflow Modes
Only rounding methods and overflow actions set prior to an operation with fi
objects affect the outcome of those operations. Once you create a fi object in
MATLAB, changing its rounding or overflow settings does not affect its value.
For example, consider the fi objects a and b:

p = fipref('NumberDisplay', 'RealWorldValue',...
'NumericTypeDisplay', 'none', 'FimathDisplay', 'none');
T = numerictype('WordLength',8,'FractionLength',7);
F = fimath('RoundingMethod','Floor','OverflowAction','Wrap');
a = fi(1,T,F)

a =

-1

b = fi(1,T)

b =

0.9922

Because you create a with a fimath object F that has OverflowAction set to
Wrap, the value of a wraps to -1. Conversely, because you create b with the
default OverflowAction value of Saturate, its value saturates to 0.9922.

Now, assign the fimath object F to b:

b.fimath = F

b =

0.9922

Because the assignment operation and corresponding overflow and saturation
happened when you created b, its value does not change when you assign
it the new fimath object F.

4-20

fimath for Rounding and Overflow Modes

Note fi objects with no local fimath and created from a floating-point
value always get constructed with a RoundingMethod of Nearest and
an OverflowAction of Saturate. To construct fi objects with different
RoundingMethod and OverflowAction properties, specify the desired
RoundingMethod and OverflowAction properties in the fi constructor.

4-21

4 Working with fimath Objects

fimath for Sharing Arithmetic Rules
There are two ways of sharing fimath properties in Fixed-Point Toolbox
software:

• “Default fimath Usage to Share Arithmetic Rules ” on page 4-22

• “Local fimath Usage to Share Arithmetic Rules” on page 4-22

Sharing fimath properties across fi objects ensures that the fi objects are
using the same arithmetic rules and helps you avoid “mismatched fimath”
errors.

Default fimath Usage to Share Arithmetic Rules
You can ensure that your fi objects are all using the same fimath properties
by not specifying any local fimath. To assure no local fimath is associated
with a fi object, you can:

• Create a fi object using the fi constructor without specifying any fimath
properties in the constructor call. For example:

a = fi(pi)

• Create a fi object using the sfi or ufi constructor. All fi objects created
with these constructors have no local fimath.

b = sfi(pi)

• Use removefimath to remove a local fimath object from an existing fi
object.

Local fimath Usage to Share Arithmetic Rules
You can also use a fimath object to define common arithmetic rules that
you would like to use for multiple fi objects. You can then create your fi
objects, using the same fimath object for each. To do so, you must also
create a numerictype object to define a common data type and scaling. Refer
to “numerictype Object Construction” on page 6-2 for more information
on numerictype objects. The following example shows the creation of a

4-22

fimath for Sharing Arithmetic Rules

numerictype object and fimath object, and then uses those objects to create
two fi objects with the same numerictype and fimath attributes:

T = numerictype('WordLength',32,'FractionLength',30)

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 30

F = fimath('RoundingMethod','Floor',...
'OverflowAction','Wrap')

F =

RoundingMethod: Floor
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

a = fi(pi, T, F)

a =

-0.8584

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 30

RoundingMethod: Floor
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

4-23

4 Working with fimath Objects

b = fi(pi/2, T, F)

b =

1.5708

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 30

RoundingMethod: Floor
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

4-24

fimath ProductMode and SumMode

fimath ProductMode and SumMode

In this section...

“Example Setup” on page 4-25

“FullPrecision” on page 4-26

“KeepLSB” on page 4-27

“KeepMSB” on page 4-28

“SpecifyPrecision” on page 4-30

Example Setup
The examples in the sections of this topic show the differences among the four
settings of the ProductMode and SumMode properties:

• FullPrecision

• KeepLSB

• KeepMSB

• SpecifyPrecision

To follow along, first set the following preferences:

p = fipref;
p.NumericTypeDisplay = 'short';
p.FimathDisplay = 'none';
p.LoggingMode = 'on';
F = fimath('OverflowAction','Wrap',...

'RoundingMethod','Floor',...
'CastBeforeSum',false);

warning off
format compact

Next, define fi objects a and b. Both have signed 8-bit data types. The
fraction length gets chosen automatically for each fi object to yield the best
possible precision:

a = fi(pi, true, 8)

4-25

4 Working with fimath Objects

a =
3.1563

s8,5

b = fi(exp(1), true, 8)
b =

2.7188
s8,5

FullPrecision
Now, set ProductMode and SumMode for a and b to FullPrecision and look
at some results:

F.ProductMode = 'FullPrecision';
F.SumMode = 'FullPrecision';
a.fimath = F;
b.fimath = F;
a
a =

3.1563 %011.00101
s8,5

b
b =

2.7188 %010.10111
s8,5

a*b
ans =

8.5811 %001000.1001010011
s16,10

a+b
ans =

5.8750 %0101.11100
s9,5

In FullPrecision mode, the product word length grows to the sum of the
word lengths of the operands. In this case, each operand has 8 bits, so the

4-26

fimath ProductMode and SumMode

product word length is 16 bits. The product fraction length is the sum of the
fraction lengths of the operands, in this case 5 + 5 = 10 bits.

The sum word length grows by one most significant bit to accommodate the
possibility of a carry bit. The sum fraction length aligns with the fraction
lengths of the operands, and all fractional bits are kept for full precision. In
this case, both operands have 5 fractional bits, so the sum has 5 fractional bits.

KeepLSB
Now, set ProductMode and SumMode for a and b to KeepLSB and look at some
results:

F.ProductMode = 'KeepLSB';
F.ProductWordLength = 12;
F.SumMode = 'KeepLSB';
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a
a =

3.1563 %011.00101
s8,5

b
b =

2.7188 %010.10111
s8,5

a*b
ans =

0.5811 %00.1001010011
s12,10

a+b
ans =

5.8750 %0000101.11100
s12,5

4-27

4 Working with fimath Objects

In KeepLSB mode, you specify the word lengths and the least significant bits
of results are automatically kept. This mode models the behavior of integer
operations in the C language.

The product fraction length is the sum of the fraction lengths of the operands.
In this case, each operand has 5 fractional bits, so the product fraction length
is 10 bits. In this mode, all 10 fractional bits are kept. Overflow occurs
because the full-precision result requires 6 integer bits, and only 2 integer
bits remain in the product.

The sum fraction length aligns with the fraction lengths of the operands, and
in this model all least significant bits are kept. In this case, both operands
had 5 fractional bits, so the sum has 5 fractional bits. The full-precision result
requires 4 integer bits, and 7 integer bits remain in the sum, so no overflow
occurs in the sum.

KeepMSB
Now, set ProductMode and SumMode for a and b to KeepMSB and look at some
results:

F.ProductMode = 'KeepMSB';
F.ProductWordLength = 12;
F.SumMode = 'KeepMSB';
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a
a =

3.1563 %011.00101
s8,5

b
b =

2.7188 %010.10111
s8,5

a*b
ans =

8.5781 %001000.100101

4-28

fimath ProductMode and SumMode

s12,6

a+b
ans =

5.8750 %0101.11100000
s12,8

In KeepMSB mode, you specify the word lengths and the most significant
bits of sum and product results are automatically kept. This mode models
the behavior of many DSP devices where the product and sum are kept in
double-wide registers, and the programmer chooses to transfer the most
significant bits from the registers to memory after each operation.

The full-precision product requires 6 integer bits, and the fraction length of
the product is adjusted to accommodate all 6 integer bits in this mode. No
overflow occurs. However, the full-precision product requires 10 fractional
bits, and only 6 are available. Therefore, precision is lost.

The full-precision sum requires 4 integer bits, and the fraction length of
the sum is adjusted to accommodate all 4 integer bits in this mode. The
full-precision sum requires only 5 fractional bits; in this case there are 8, so
there is no loss of precision.

This example shows that, in KeepMSB mode the fraction length changes
regardless of whether or not an overflow occurs. The fraction length is set
to the amount needed to represent the product in case both terms use the
maximum possible value (18+18-16=20 in this example).

F = fimath('SumMode','KeepMSB','ProductMode','KeepMSB',...
'ProductWordLength',16,'SumWordLength',16);

a=fi(100,1,16,-2,'fimath',F);
a*a

ans =

0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

4-29

4 Working with fimath Objects

FractionLength: -20

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: KeepMSB
ProductWordLength: 16

SumMode: KeepMSB
SumWordLength: 16
CastBeforeSum: true

SpecifyPrecision
Now set ProductMode and SumMode for a and b to SpecifyPrecision and
look at some results:

F.ProductMode = 'SpecifyPrecision';
F.ProductWordLength = 8;
F.ProductFractionLength = 7;
F.SumMode = 'SpecifyPrecision';
F.SumWordLength = 8;
F.SumFractionLength = 7;
a.fimath = F;
b.fimath = F;
a
a =

3.1563 %011.00101
s8,5

b
b =

2.7188 %010.10111
s8,5

a*b
ans =

0.5781 %0.1001010
s8,7

a+b
ans =

4-30

fimath ProductMode and SumMode

-0.1250 %1.1110000
s8,7

In SpecifyPrecision mode, you must specify both word length and fraction
length for sums and products. This example unwisely uses fractional formats
for the products and sums, with 8-bit word lengths and 7-bit fraction lengths.

The full-precision product requires 6 integer bits, and the example specifies
only 1, so the product overflows. The full-precision product requires 10
fractional bits, and the example only specifies 7, so there is precision loss in
the product.

The full-precision sum requires 4 integer bits, and the example specifies only
1, so the sum overflows. The full-precision sum requires 5 fractional bits, and
the example specifies 7, so there is no loss of precision in the sum.

4-31

4 Working with fimath Objects

4-32

5

Working with fipref Objects

• “fipref Object Construction” on page 5-2

• “fipref Object Properties” on page 5-3

• “fi Object Display Preferences Using fipref” on page 5-5

• “Underflow and Overflow Logging Using fipref” on page 5-7

• “Data Type Override Preferences Using fipref” on page 5-12

5 Working with fipref Objects

fipref Object Construction
The fipref object defines the display and logging attributes for all fi objects.
You can use the fipref constructor function to create a new object.

To get started, type

P = fipref

to create a default fipref object.

P =
NumberDisplay: 'RealWorldValue'

NumericTypeDisplay: 'full'
FimathDisplay: 'full'

LoggingMode: 'Off'
DataTypeOverride: 'ForceOff'

The syntax

P = fipref(...'PropertyName','PropertyValue'...)

allows you to set properties for a fipref object at object creation with property
name/property value pairs.

Your fipref settings persist throughout your MATLAB session. Use
reset(fipref) to return to the default settings during your session. Use
savefipref to save your display preferences for subsequent MATLAB
sessions.

5-2

fipref Object Properties

fipref Object Properties

In this section...

“Display, Data Type Override, and Logging Properties” on page 5-3

“fipref Object Properties Setting ” on page 5-3

Display, Data Type Override, and Logging Properties
The following properties of fipref objects are always writable:

• FimathDisplay— Display options for the local fimath attributes of a fi
object

• DataTypeOverride — Data type override options

• LoggingMode— Logging options for operations performed on fi objects

• NumericTypeDisplay— Display options for the numeric type attributes of
a fi object

• NumberDisplay— Display options for the value of a fi object

These properties are described in detail in the “fi Object Properties” on page
2-17. To learn how to specify properties for fipref objects in Fixed-Point
Toolbox software, refer to “fipref Object Properties Setting ” on page 5-3.

fipref Object Properties Setting

Setting fipref Properties at Object Creation
You can set properties of fipref objects at the time of object creation by
including properties after the arguments of the fipref constructor function.
For example, to set NumberDisplay to bin and NumericTypeDisplay to short,

P = fipref('NumberDisplay', 'bin', ...
'NumericTypeDisplay', 'short')

P =
NumberDisplay: 'bin'

NumericTypeDisplay: 'short'

5-3

5 Working with fipref Objects

FimathDisplay: 'full'
LoggingMode: 'Off'

DataTypeOverride: 'ForceOff'

Using Direct Property Referencing with fipref
You can reference directly into a property for setting or retrieving fipref
object property values using MATLAB structure-like referencing. You do this
by using a period to index into a property by name.

For example, to get the NumberDisplay of P,

P.NumberDisplay

ans =

bin

To set the NumericTypeDisplay of P,

P.NumericTypeDisplay = 'full'

P =
NumberDisplay: 'bin'

NumericTypeDisplay: 'full'
FimathDisplay: 'full'

LoggingMode: 'Off'
DataTypeOverride: 'ForceOff'

5-4

fi Object Display Preferences Using fipref

fi Object Display Preferences Using fipref
You use the fipref object to specify three aspects of the display of fi objects:
the object value, the local fimath properties, and the numerictype properties.

For example, the following code shows the default fipref display for a fi
object with a local fimath object:

a = fi(pi, 'RoundingMethod', 'Floor', 'OverflowAction', 'Wrap')

a =
3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

RoundingMethod: Floor
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

The default fipref display for a fi object with no local fimath is as follows:

a = fi(pi)

a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

Next, change the fipref display properties:

P = fipref;

5-5

5 Working with fipref Objects

P.NumberDisplay = 'bin';
P.NumericTypeDisplay = 'short';
P.FimathDisplay = 'none'

P =
NumberDisplay: 'bin'

NumericTypeDisplay: 'short'
FimathDisplay: 'none'

LoggingMode: 'Off'
DataTypeOverride: 'ForceOff'

a

a =
0110010010000111

s16,13

For more information on the default fipref display, see “View Fixed-Point
Data”.

5-6

Underflow and Overflow Logging Using fipref

Underflow and Overflow Logging Using fipref

In this section...

“Logging Overflows and Underflows as Warnings” on page 5-7

“Accessing Logged Information with Functions” on page 5-9

Logging Overflows and Underflows as Warnings
Overflows and underflows are logged as warnings for all assignment, plus,
minus, and multiplication operations when the fipref LoggingMode property
is set to on. For example, try the following:

1 Create a signed fi object that is a vector of values from 1 to 5, with 8-bit
word length and 6-bit fraction length.

a = fi(1:5,1,8,6);

2 Define the fimath object associated with a, and indicate that you will
specify the sum and product word and fraction lengths.

F = a.fimath;
F.SumMode = 'SpecifyPrecision';
F.ProductMode = 'SpecifyPrecision';
a.fimath = F;

3 Define the fipref object and turn on overflow and underflow logging.

P = fipref;
P.LoggingMode = 'on';

4 Suppress the numerictype and fimath displays.

P.NumericTypeDisplay = 'none';
P.FimathDisplay = 'none';

5 Specify the sum and product word and fraction lengths.

a.SumWordLength = 16;
a.SumFractionLength = 15;

5-7

5 Working with fipref Objects

a.ProductWordLength = 16;
a.ProductFractionLength = 15;

6 Warnings are displayed for overflows and underflows in assignment
operations. For example, try:

a(1) = pi
Warning: 1 overflow occurred in the fi assignment operation.

a =

1.9844 1.9844 1.9844 1.9844 1.9844

a(1) = double(eps(a))/10
Warning: 1 underflow occurred in the fi assignment operation.

a =

0 1.9844 1.9844 1.9844 1.9844

7 Warnings are displayed for overflows and underflows in addition and
subtraction operations. For example, try:

a+a
Warning: 12 overflows occurred in the fi + operation.

ans =

0 1.0000 1.0000 1.0000 1.0000

a-a
Warning: 8 overflows occurred in the fi - operation.

ans =

0 0 0 0 0

8 Warnings are displayed for overflows and underflows in multiplication
operations. For example, try:

5-8

Underflow and Overflow Logging Using fipref

a.*a
Warning: 4 product overflows occurred in the fi .* operation.

ans =

0 1.0000 1.0000 1.0000 1.0000

a*a'
Warning: 4 product overflows occurred in the fi * operation.
Warning: 3 sum overflows occurred in the fi * operation.

ans =

1.0000

The final example above is a complex multiplication that requires both
multiplication and addition operations. The warnings inform you of overflows
and underflows in both.

Because overflows and underflows are logged as warnings, you can use the
dbstop MATLAB function with the syntax

dbstop if warning

to find the exact lines in a file that are causing overflows or underflows.

Use

dbstop if warning fi:underflow

to stop only on lines that cause an underflow. Use

dbstop if warning fi:overflow

to stop only on lines that cause an overflow.

Accessing Logged Information with Functions
When the fipref LoggingMode property is set to on, you can use the following
functions to return logged information about assignment and creation
operations to the MATLAB command line:

5-9

5 Working with fipref Objects

• maxlog — Returns the maximum real-world value

• minlog — Returns the minimum value

• noverflows — Returns the number of overflows

• nunderflows — Returns the number of underflows

LoggingMode must be set to on before you perform any operation in order to
log information about it. To clear the log, use the function resetlog.

For example, consider the following. First turn logging on, then perform
operations, and then finally get information about the operations:

fipref('LoggingMode','on');
x = fi([-1.5 eps 0.5], true, 16, 15);
x(1) = 3.0;
maxlog(x)

ans =

1.0000

minlog(x)

ans =
-1

noverflows(x)

ans =

2

nunderflows(x)

ans =

1

5-10

Underflow and Overflow Logging Using fipref

Next, reset the log and request the same information again. Note that the
functions return empty [], because logging has been reset since the operations
were run:

resetlog(x)
maxlog(x)

ans =

[]

minlog(x)

ans =

[]

noverflows(x)

ans =

[]

nunderflows(x)

ans =

[]

5-11

5 Working with fipref Objects

Data Type Override Preferences Using fipref

In this section...

“Overriding the Data Type of fi Objects” on page 5-12

“Data Type Override for Fixed-Point Scaling” on page 5-13

Overriding the Data Type of fi Objects
Use the fipref DataTypeOverride property to override fi objects with
singles, doubles, or scaled doubles. Data type override only occurs when the
fi constructor function is called. Objects that are created while data type
override is on have the overridden data type. They maintain that data type
when data type override is later turned off. To obtain an object with a data
type that is not the override data type, you must create an object when data
type override is off:

p = fipref('DataTypeOverride', 'TrueDoubles')

p =

NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'full'
LoggingMode: 'Off'

DataTypeOverride: 'TrueDoubles'

a = fi(pi)

a =

3.1416

DataTypeMode: Double

p = fipref('DataTypeOverride', 'ForceOff')

p =

5-12

Data Type Override Preferences Using fipref

NumberDisplay: 'RealWorldValue'
NumericTypeDisplay: 'full'

FimathDisplay: 'full'
LoggingMode: 'Off'

DataTypeOverride: 'ForceOff'

a

a =

3.1416

DataTypeMode: Double

b = fi(pi)

b =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 13

Tip To reset the fipref object to its default values use reset(fipref) or
reset(p), where p is a fipref object. This is useful to ensure that data type
override and logging are off.

Data Type Override for Fixed-Point Scaling
Choosing the scaling for the fixed-point variables in your algorithms can
be difficult. In Fixed-Point Toolbox software, you can use a combination of
data type override and min/max logging to help you discover the numerical
ranges that your fixed-point data types need to cover. These ranges dictate
the appropriate scalings for your fixed-point data types. In general, the
procedure is

5-13

5 Working with fipref Objects

1 Implement your algorithm using fixed-point fi objects, using initial “best
guesses” for word lengths and scalings.

2 Set the fipref DataTypeOverride property to ScaledDoubles, TrueSingles,
or TrueDoubles.

3 Set the fipref LoggingMode property to on.

4 Use the maxlog and minlog functions to log the maximum and minimum
values achieved by the variables in your algorithm in floating-point mode.

5 Set the fipref DataTypeOverride property to ForceOff.

6 Use the information obtained in step 4 to set the fixed-point scaling for each
variable in your algorithm such that the full numerical range of each variable
is representable by its data type and scaling.

A detailed example of this process is shown in the Fixed-Point Toolbox Setting
Fixed-Point Data Types Using Min/Max Instrumentation example.

5-14

6

Working with numerictype
Objects

• “numerictype Object Construction” on page 6-2

• “numerictype Object Properties” on page 6-7

• “numerictype Structure of Fixed-Point Objects” on page 6-11

• “numerictype Objects Usage to Share Data Type and Scaling Settings of fi
objects” on page 6-14

6 Working with numerictype Objects

numerictype Object Construction

In this section...

“numerictype Object Syntaxes” on page 6-2

“Example: Construct a numerictype Object with Property Name and
Property Value Pairs” on page 6-3

“Example: Copy a numerictype Object” on page 6-4

“Example: Build numerictype Object Constructors in a GUI” on page 6-5

numerictype Object Syntaxes
numerictype objects define the data type and scaling attributes of fi
objects, as well as Simulink signals and model parameters. You can create
numerictype objects in Fixed-Point Toolbox software in one of two ways:

• You can use the numerictype constructor function to create a new object.

• You can use the numerictype constructor function to copy an existing
numerictype object.

To get started, type

T = numerictype

to create a default numerictype object.

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

To see all of the numerictype object syntaxes, refer to the numerictype
constructor function reference page.

6-2

numerictype Object Construction

The following examples show different ways of constructing numerictype
objects. For more examples of constructing numerictype objects, see the
“Examples” on the numerictype constructor function reference page.

Example: Construct a numerictype Object with
Property Name and Property Value Pairs
When you create a numerictype object using property name and property
value pairs, Fixed-Point Toolbox software first creates a default numerictype
object, and then, for each property name you specify in the constructor,
assigns the corresponding value.

This behavior differs from the behavior that occurs when you use a syntax
such as T = numerictype(s,w), where you only specify the property values
in the constructor. Using such a syntax results in no default numerictype
object being created, and the numerictype object receives only the assigned
property values that are specified in the constructor.

The following example shows how the property name/property value syntax
creates a slightly different numerictype object than the property values
syntax, even when you specify the same property values in both constructors.

To demonstrate this difference, suppose you want to create an unsigned
numerictype object with a word length of 32 bits.

First, create the numerictype object using property name/property value
pairs.

T1 = numerictype('Signed',0,'WordLength',32)

T1 =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 32

FractionLength: 15

6-3

6 Working with numerictype Objects

The numerictype object T1 has the same DataTypeMode and FractionLength
as a default numerictype object, but the WordLength and Signed properties
are overwritten with the values you specified.

Now, create another unsigned 32 bit numerictype object, but this time specify
only property values in the constructor.

T2 = numerictype(0,32)

T2 =

DataTypeMode: Fixed-point: unspecified scaling
Signedness: Unsigned
WordLength: 32

Unlike T1, T2 only has the property values you specified. The DataTypeMode
of T2 is Fixed-Point: unspecified scaling, so no fraction length is
assigned.

fi objects cannot have unspecified numerictype properties. Thus, all
unspecified numerictype object properties become specified at the time of
fi object creation.

Example: Copy a numerictype Object
To copy a numerictype object, simply use assignment as in the following
example:

T = numerictype;
U = T;
isequal(T,U)

ans =

1

6-4

numerictype Object Construction

Example: Build numerictype Object Constructors in
a GUI
When you are working with files in MATLAB, you can build your numerictype
object constructors using the Insert numerictype Constructor dialog box.
After specifying the properties of the numerictype object in the dialog box,
you can insert the prepopulated numerictype object constructor string at a
specific location in your file.

For example, to create a signed numerictype object with binary-point scaling,
a word length of 32 bits and a fraction length of 30 bits, perform the following
steps:

1 On the Home tab, in the File section, click New > Script to open the
MATLAB Editor

2 On the Editor tab, in the Edit section, click in the Insert button
group. Click the Insert numerictype... to open the Insert numerictype
Constructor dialog box.

3 Use the edit boxes and drop-down menus to specify the following properties
of the numerictype object:

• Data type mode = Fixed-point: binary point scaling

• Signedness = Signed

• Word length = 32

• Fraction length = 30

6-5

6 Working with numerictype Objects

4 To insert the numerictype object constructor string in your file, place
your cursor at the desired location in the file, and click OK on the Insert
numerictype Constructor dialog box. Clicking OK closes the Insert
numerictype Constructor dialog box and automatically populates the
numerictype object constructor string in your file:

6-6

numerictype Object Properties

numerictype Object Properties

In this section...

“Data Type and Scaling Properties” on page 6-7

“Set numerictype Object Properties” on page 6-8

Data Type and Scaling Properties
All properties of a numerictype object are writable. However, the
numerictype properties of a fi object become read only after the fi object has
been created. Any numerictype properties of a fi object that are unspecified
at the time of fi object creation are automatically set to their default values.
The properties of a numerictype object are:

• Bias — Bias

• DataType — Data type category

• DataTypeMode — Data type and scaling mode

• FixedExponent — Fixed-point exponent

• SlopeAdjustmentFactor — Slope adjustment

• FractionLength— Fraction length of the stored integer value, in bits

• Scaling — Fixed-point scaling mode

• Signed — Signed or unsigned

• Signedness — Signed, unsigned, or auto

• Slope — Slope

• WordLength— Word length of the stored integer value, in bits

These properties are described in detail in the “fi Object Properties” on
page 2-17. To learn how to specify properties for numerictype objects in
Fixed-Point Toolbox software, refer to “Set numerictype Object Properties”
on page 6-8.

6-7

6 Working with numerictype Objects

Set numerictype Object Properties

Setting numerictype Properties at Object Creation
You can set properties of numerictype objects at the time of object creation
by including properties after the arguments of the numerictype constructor
function.

For example, to set the word length to 32 bits and the fraction length to 30 bits,

T = numerictype('WordLength', 32, 'FractionLength', 30)

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 30

Use Direct Property Referencing with numerictype Objects
You can reference directly into a property for setting or retrieving
numerictype object property values using MATLAB structure-like
referencing. You do this by using a period to index into a property by name.

For example, to get the word length of T,

T.WordLength

ans =

32

To set the fraction length of T,

T.FractionLength = 31

T =

6-8

numerictype Object Properties

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 31

Set numerictype Properties in the Model Explorer
You can view and change the properties for any numerictype object defined
in the MATLAB workspace in the Model Explorer. Open the Model Explorer
by selecting View > Model Explorer in any Simulink model, or by typing
daexplr at the MATLAB command line.

The figure below shows the Model Explorer when you define the following
numerictype objects in the MATLAB workspace:

T = numerictype

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

U = numerictype('DataTypeMode', 'Fixed-point: slope and bias')

U =

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 2^-15
Bias: 0

6-9

6 Working with numerictype Objects

Select the Base Workspace node in the Model Hierarchy pane to view
the current objects in the Contents pane. When you select a numerictype
object in the Contents pane, you can view and change its properties in the
Dialog pane.

6-10

numerictype Structure of Fixed-Point Objects

numerictype Structure of Fixed-Point Objects

In this section...

“Valid Values for numerictype Structure Properties” on page 6-11

“Properties That Affect the Slope” on page 6-13

“Stored Integer Value and Real World Value” on page 6-13

Valid Values for numerictype Structure Properties
The numerictype object contains all the data type and scaling attributes
of a fixed-point object. The numerictype object behaves like any MATLAB
structure, except that it only lets you set valid values for defined fields. The
following table shows the possible settings of each field of the structure.

Note When you create a fi object, any unspecified field of the numerictype
object reverts to its default value. Thus, if the DataTypeMode is set to
unspecified scaling, it defaults to binary point scaling when the fi
object is created. If the Signedness property of the numerictype object is set
to Auto, it defaults to Signed when the fi object is created.

DataTypeMode DataType Scaling Signedness
Word-
Length

Fraction-
Length Slope Bias

Fixed-point data types

Fixed-point:
binary point
scaling

Fixed BinaryPoint Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

Positive
or
negative
integer

2^(-fraction
length)

0

Fixed-point:
slope and
bias scaling

Fixed SlopeBias Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

N/A Any
floating-
point
number

Any
floating-
point
number

6-11

6 Working with numerictype Objects

DataTypeMode DataType Scaling Signedness
Word-
Length

Fraction-
Length Slope Bias

Fixed-point:
unspecified
scaling

Fixed Unspecified Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

N/A N/A N/A

Scaled double data types

Scaled
double:
binary point
scaling

ScaledDouble BinaryPoint Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

Positive
or
negative
integer

2^(-fraction
length)

0

Scaled
double:
slope and
bias scaling

ScaledDouble SlopeBias Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

N/A Any
floating-
point
number

Any
floating-
point
number

Scaled
double:
unspecified
scaling

ScaledDouble Unspecified Signed
Unsigned
Auto

Positive
integer
from
1 to
65,536

N/A N/A N/A

Built-in data types

Double double N/A 1
true

64 0 1 0

Single single N/A 1
true

32 0 1 0

Boolean boolean N/A 0
false

1 0 1 0

You cannot change the numerictype properties of a fi object after fi object
creation.

6-12

numerictype Structure of Fixed-Point Objects

Properties That Affect the Slope
The Slope field of the numerictype structure is related to the
SlopeAdjustmentFactor and FixedExponent properties by

slope slope adjustment factor fixed exponent= × 2

The FixedExponent and FractionLength properties are related by

fixed exponent fraction length= −

If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength
property, the Slope field is modified.

Stored Integer Value and Real World Value
The numerictype StoredIntegerValue and RealWorldValue properties are
related according to

real world value stored integer value -fraction length- = × 2

which is equivalent to

real world value

stored integer value slope a

-

=

× (ddjustment factor biasfixed exponent× +2)

If any of these properties is updated, the others are modified accordingly.

6-13

6 Working with numerictype Objects

numerictype Objects Usage to Share Data Type and
Scaling Settings of fi objects

You can use a numerictype object to define common data type and scaling
rules that you would like to use for many fi objects. You can then create
multiple fi objects, using the same numerictype object for each.

Example 1
In the following example, you create a numerictype object T with word length
32 and fraction length 28. Next, to ensure that your fi objects have the same
numerictype attributes, create fi objects a and b using your numerictype
object T.

format long g
T = numerictype('WordLength',32,'FractionLength',28)

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 28

a = fi(pi,T)

a =

3.1415926553309

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 28

b = fi(pi/2, T)

6-14

numerictype Objects Usage to Share Data Type and Scaling Settings of fi objects

b =

1.5707963258028

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 28

Example 2
In this example, start by creating a numerictype object T with [Slope Bias]
scaling. Next, use that object to create two fi objects, c and d with the same
numerictype attributes:

T = numerictype('Scaling','slopebias','Slope', 2^2, 'Bias', 0)

T =

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 2^2
Bias: 0

c = fi(pi, T)

c =

4

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 2^2
Bias: 0

d = fi(pi/2, T)

6-15

6 Working with numerictype Objects

d =

0

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16

Slope: 2^2
Bias: 0

6-16

7

Working with quantizer
Objects

• “Constructing quantizer Objects” on page 7-2

• “quantizer Object Properties” on page 7-3

• “Quantizing Data with quantizer Objects” on page 7-4

• “Transformations for Quantized Data” on page 7-6

7 Working with quantizer Objects

Constructing quantizer Objects
You can use quantizer objects to quantize data sets. You can create
quantizer objects in Fixed-Point Toolbox software in one of two ways:

• You can use the quantizer constructor function to create a new object.

• You can use the quantizer constructor function to copy a quantizer object.

To create a quantizer object with default properties, type

q = quantizer

q =

DataMode = fixed
RoundingMethod = Floor
OverflowAction = Saturate

Format = [16 15]

To copy a quantizer object, simply use assignment as in the following
example:

q = quantizer;
r = q;
isequal(q,r)

ans =

1

A listing of all the properties of the quantizer object q you just created is
displayed along with the associated property values. All property values
are set to defaults when you construct a quantizer object this way. See
“quantizer Object Properties” on page 7-3 for more details.

7-2

quantizer Object Properties

quantizer Object Properties
The following properties of quantizer objects are always writable:

• DataMode — Type of arithmetic used in quantization

• Format — Data format of a quantizer object

• OverflowAction — Action to take on overflow

• RoundingMethod — Rounding method

See the“fi Object Properties” on page 2-17 for more details about these
properties, including their possible values.

For example, to create a fixed-point quantizer object with

• The Format property value set to [16,14]

• The OverflowAction property value set to 'Saturate'

• The RoundingMethod property value set to 'Ceiling'

type

q = quantizer('datamode','fixed','format',[16,14],...
'OverflowMode','saturate','RoundMode','ceil')

You do not have to include quantizer object property names when you set
quantizer object property values.

For example, you can create quantizer object q from the previous example
by typing

q = quantizer('fixed',[16,14],'saturate','ceil')

Note You do not have to include default property values when you construct
a quantizer object. In this example, you could leave out 'fixed' and
'saturate'.

7-3

7 Working with quantizer Objects

Quantizing Data with quantizer Objects
You construct a quantizer object to specify the quantization parameters
to use when you quantize data sets. You can use the quantize function to
quantize data according to a quantizer object’s specifications.

Once you quantize data with a quantizer object, its state values might
change.

The following example shows

• How you use quantize to quantize data

• How quantization affects quantizer object states

• How you reset quantizer object states to their default values using reset

1 Construct an example data set and a quantizer object.

format long g
rng('default');
x = randn(100,4);
q = quantizer([16,14]);

2 Retrieve the values of the maxlog and noverflows states.

q.maxlog

ans =

-1.79769313486232e+308

q.noverflows

ans =

0

Note that maxlog is equal to -realmax, which indicates that the quantizer
q is in a reset state.

3 Quantize the data set according to the quantizer object’s specifications.

7-4

Quantizing Data with quantizer Objects

y = quantize(q,x);
Warning: 626 overflow(s) occurred in the fi quantize operation.

4 Check the values of maxlog and noverflows.

q.maxlog

ans =

1.99993896484375

q.noverflows

ans =

626

Note that the maximum logged value was taken after quantization, that is,
q.maxlog == max(y).

5 Reset the quantizer states and check them.

reset(q)
q.maxlog

ans =

-1.79769313486232e+308

q.noverflows

ans =

0

7-5

7 Working with quantizer Objects

Transformations for Quantized Data
You can convert data values from numeric to hexadecimal or binary according
to a quantizer object’s specifications.

Use

• num2bin to convert data to binary

• num2hex to convert data to hexadecimal

• hex2num to convert hexadecimal data to numeric

• bin2num to convert binary data to numeric

For example,

q = quantizer([3 2]);
x = [0.75 -0.25

0.50 -0.50
0.25 -0.75

0 -1];
b = num2bin(q,x)

b =
011
010
001
000
111
110
101
100

produces all two’s complement fractional representations of 3-bit fixed-point
numbers.

7-6

8

Code Acceleration and Code
Generation from MATLAB
for Fixed-Point Algorithms

• “Code Acceleration and Code Generation from MATLAB” on page 8-3

• “Requirements for Generating Complied C Code Files” on page 8-4

• “Functions Supported for Code Acceleration or Generation” on page 8-5

• “Fixed-Point Code Acceleration and Generation Workflow” on page 8-14

• “Set Up Compiler to Generate Compiled C Code Functions” on page 8-15

• “Accelerate Code Using fiaccel” on page 8-16

• “File Infrastructure and Paths Setup” on page 8-21

• “Detect and Debug Code Generation Errors” on page 8-25

• “Set Up C Code Compilation Options” on page 8-28

• “MEX Configuration Dialog Box Options ” on page 8-30

• “Specify Primary Function Input Properties” on page 8-36

• “Best Practices for Accelerating Fixed-Point Code” on page 8-48

• “Create and Use Fixed-Point Code Generation Reports” on page 8-52

• “Generate C Code from Code Containing Global Data” on page 8-57

• “Define Input Properties Programmatically in MATLAB File” on page 8-63

• “Control Run-Time Checks” on page 8-71

• “Generation with MATLAB® Coder™ ” on page 8-74

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

• “Code Generation with MATLAB Function Block” on page 8-75

• “Generate Fixed-Point FIR Code Using MATLAB Function Block” on page
8-84

• “Fixed-Point FFT Code Example Parameter Values” on page 8-89

• “Accelerate Code for Variable-Size Data” on page 8-92

• “Propose Fixed-Point Data Types in a MATLAB® Coder™ Project” on
page 8-103

• “Apply Fixed-Point Data Types in a MATLAB® Coder™ Project” on page
8-113

• “Code Generation Readiness Tool” on page 8-119

• “Check Code Using the Code Generation Readiness Tool” on page 8-125

8-2

Code Acceleration and Code Generation from MATLAB®

Code Acceleration and Code Generation from MATLAB
In many cases, you may want your code to run faster and more efficiently.
Code acceleration provides optimizations for accelerating fixed-point
algorithms through MEX file building. In Fixed-Point Toolbox the fiaccel
function converts your MATLAB code to a MEX function and can greatly
accelerate the execution speed of your fixed-point algorithms.

Code generation creates efficient, production-quality C/C++ code for desktop
and embedded applications. There are several ways to use Fixed-Point
Toolbox software to generate C/C++ code.

Use... To... Requires... See...

MATLAB
Coder™
(codegen)
function

Automatically
convert
MATLAB code
to C/C++ code

MATLAB Coder
code generation
software license

“C Code
Generation at
the Command
Line” in the
MATLAB Coder
documentation

MATLAB
Function

Use MATLAB
code in your
Simulink models
that generate
embeddable
C/C++ code

Simulink license in the Simulink
documentation

MATLAB code generation supports variable-size arrays and matrices with
known upper bounds. To learn more about using variable-size signals, see
“What Is Variable-Size Data?” on page 21-2 in the Code Generation for
MATLAB documentation.

8-3

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Requirements for Generating Complied C Code Files
You use the fiaccel function to generate MEX code from a MATLAB
algorithm. The algorithm must meet these requirements:

• Must be a MATLAB function, not a script

• Must meet the requirements listed on the fiaccel reference page

• Does not call custom C code using any of the following MATLAB Coder
constructs:

- coder.ceval

- coder.ref

- coder.rref

- coder.wref

8-4

Functions Supported for Code Acceleration or Generation

Functions Supported for Code Acceleration or Generation
In addition to any function-specific limitations listed in the table, the following
general limitations always apply to the use of Fixed-Point Toolbox functions
in generated code or with fiaccel:

• fipref and quantizer objects are not supported.

• Word lengths greater than 128 bits are not supported.

• You cannot change the fimath or numerictype of a given fi variable after
that variable has been created.

• The boolean value of the DataTypeMode and DataType properties are not
supported.

• For all SumMode property settings other than FullPrecision, the
CastBeforeSum property must be set to true.

• The numel function returns the number of elements of fi objects in the
generated code.

• You can use parallel for (parfor) loops in code compiled with fiaccel, but
those loops are treated like regular for loops.

• When you compile code containing fi objects with nontrivial slope and bias
scaling, you may see different results in generated code than you achieve
by running the same code in MATLAB.

• All general limitations of C/C++ code generated from MATLAB apply. See
“MATLAB Language Features Not Supported for C/C++ Code Generation”
for more information.

Function Remarks/Limitations

abs N/A

accumneg N/A

accumpos N/A

add N/A

all N/A

any N/A

8-5

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Function Remarks/Limitations

atan2 N/A

bitand Not supported for slope-bias scaled fi objects.

bitandreduce N/A

bitcmp N/A

bitconcat N/A

bitget N/A

bitor Not supported for slope-bias scaled fi objects.

bitorreduce N/A

bitreplicate N/A

bitrol N/A

bitror N/A

bitset N/A

bitshift N/A

bitsliceget N/A

bitsll N/A

bitsra N/A

bitsrl N/A

bitxor Not supported for slope-bias scaled fi objects.

bitxorreduce N/A

ceil N/A

complex N/A

conj N/A

8-6

Functions Supported for Code Acceleration or Generation

Function Remarks/Limitations

conv • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
always computed using the SumMode property of the governing
fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when both
inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

convergent N/A

cordicabs Variable-size signals are not supported.

cordicangle Variable-size signals are not supported.

cordicatan2 Variable-size signals are not supported.

cordiccart2pol Variable-size signals are not supported.

cordiccexp Variable-size signals are not supported.

cordiccos Variable-size signals are not supported.

cordicpol2cart Variable-size signals are not supported.

cordicrotate Variable-size signals are not supported.

cordicsin Variable-size signals are not supported.

cordicsincos Variable-size signals are not supported.

cos N/A

ctranspose N/A

diag If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

8-7

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Function Remarks/Limitations

divide • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Complex and imaginary divisors are not supported.

• Code generation in MATLAB does not support the syntax
T.divide(a,b).

double N/A

end N/A

eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and fi double
signals.

eq Not supported for fixed-point signals with different biases.

fi • The default constructor syntax without any input arguments is
not supported.

• If the numerictype is not fully specified, the input to fi must be
a constant, a fi, a single, or a built-in integer value. If the input
is a built-in double value, it must be a constant. This limitation
allows fi to autoscale its fraction length based on the known data
type of the input.

• numerictype object information must be available for
nonfixed-point Simulink inputs.

filter • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

fimath • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a fimath object. You define this object in
the MATLAB Function block dialog in the Model Explorer.

• Use to create fimath objects in the generated code.

fix N/A

fixed.Quantizer N/A

floor N/A

8-8

Functions Supported for Code Acceleration or Generation

Function Remarks/Limitations

ge Not supported for fixed-point signals with different biases.

get The syntax structure = get(o) is not supported.

getlsb N/A

getmsb N/A

gt Not supported for fixed-point signals with different biases.

hdlram N/A

horzcat N/A

imag N/A

int8, int16, int32 N/A

iscolumn N/A

isempty N/A

isequal N/A

isfi N/A

isfimath N/A

isfimathlocal N/A

isfinite N/A

isinf N/A

isnan N/A

isnumeric N/A

isnumerictype N/A

isreal N/A

isrow N/A

isscalar N/A

issigned N/A

isvector N/A

le Not supported for fixed-point signals with different biases.

8-9

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Function Remarks/Limitations

length N/A

logical N/A

lowerbound N/A

lsb • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and double
signals.

lt Not supported for fixed-point signals with different biases.

max N/A

mean N/A

median N/A

min N/A

minus Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

mpower • The exponent input, k, must be constant; that is, its value must be
known at compile time.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
always computed using the SumMode property of the governing
fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
the first input, a, is nonscalar. However, when a is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

8-10

Functions Supported for Code Acceleration or Generation

Function Remarks/Limitations

mpy When you provide complex inputs to the mpy function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and data
manager and set the Complexity parameter for all known complex
inputs to On.

mrdivide N/A

mtimes • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
always computed using the SumMode property of the governing
fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when both
inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

ndims N/A

ne Not supported for fixed-point signals with different biases.

nearest N/A

numberofelements numberofelements and numel both work the same as MATLAB
numel for fi objects in the generated code.

numerictype • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a numerictype object that is populated
with the signal’s data type and scaling information.

• Returns the data type when the input is a nonfixed-point signal.

• Use to create numerictype objects in generated code.

8-11

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Function Remarks/Limitations

permute N/A

plus Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

pow2 N/A

power The exponent input, k, must be constant; that is, its value must be
known at compile time.

quantize N/A

range N/A

rdivide N/A

real N/A

realmax N/A

realmin N/A

reinterpretcast N/A

removefimath N/A

repmat N/A

rescale N/A

reshape N/A

round N/A

setfimath N/A

sfi N/A

sign N/A

sin N/A

single N/A

size N/A

sort N/A

sqrt • Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.

8-12

Functions Supported for Code Acceleration or Generation

Function Remarks/Limitations

storedInteger N/A

storedIntegerToDouble N/A

sub N/A

subsasgn N/A

subsref N/A

sum Variable-sized inputs are only supported when the SumMode property
of the governing fimath is set to Specify precision or Keep LSB.

times • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• When you provide complex inputs to the times function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

transpose N/A

tril If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

triu If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

ufi N/A

uint8, uint16, uint32 N/A

uminus N/A

uplus N/A

upperbound N/A

vertcat N/A

8-13

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Fixed-Point Code Acceleration and Generation Workflow

Step Action Details

1 Set up your C compiler. See “Set Up Compiler to Generate Compiled
C Code Functions” on page 8-15

2 Set up your file infrastructure. See “File Infrastructure and Paths Setup”
on page 8-21.

3 Make your MATLAB algorithm suitable for
code generation

See “Best Practices for Accelerating
Fixed-Point Code” on page 8-48.

4 Set compilation options. See “Set Up C Code Compilation Options”
on page 8-28

5 Specify properties of primary function
inputs.

See “Specify Primary Function Input
Properties” on page 8-36.

6 Run fiaccel with the appropriate
command-line options.

See “Recommended Compilation Options
for fiaccel” on page 8-48

8-14

Set Up Compiler to Generate Compiled C Code Functions

Set Up Compiler to Generate Compiled C Code Functions
Set up your C compiler by running mex -setup, as described in the
documentation for mex in the MATLAB Function Reference. You must
run this command even if you use the default C compiler that comes with
MATLAB for Windows® platforms. You can also use mex to choose and
configure a different C compiler, as described in “What You Need to Build
MEX-Files” in the MATLAB External Interfaces documentation.

You can use the following compilers to generate MEX functions with fiaccel:

• Lcc-win32 C 2.4.1

• Microsoft® Visual C++® 2008 Express

• Microsoft Visual C++ 2005

• Microsoft Visual C++ 6.0

• Open WATCOM C++ 1.7

• GCC

8-15

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Accelerate Code Using fiaccel

In this section...

“Speeding Up Fixed-Point Execution with fiaccel” on page 8-16

“Running fiaccel” on page 8-16

“Generated Files and Locations” on page 8-17

“Data Type Override Using fiaccel” on page 8-20

Speeding Up Fixed-Point Execution with fiaccel
You can convert fixed-point MATLAB code to MEX functions using fiaccel.
The generated MEX functions contain optimizations to automatically
accelerate fixed-point algorithms to compiled C/C++ code speed in MATLAB.
The fiaccel function can greatly increase the execution speed of your
algorithms.

Running fiaccel
The basic command is:

fiaccel M_fcn

By default, fiaccel performs the following actions:

• Searches for the function M_fcn stored in the file M_fcn.m as specified in
“Compile Path Search Order” on page 8-21.

• Compiles M_fcn to MEX code.

• If there are no errors or warnings, generates a platform-specific MEX file in
the current folder, using the naming conventions described in “File Naming
Conventions” on page 8-51.

• If there are errors, does not generate a MEX file, but produces an error
report in a default output folder, as described in “Generated Files and
Locations” on page 8-17.

• If there are warnings, but no errors, generates a platform-specific MEX file
in the current folder, but does report the warnings.

8-16

Accelerate Code Using fiaccel

You can modify this default behavior by specifying one or more compiler
options with fiaccel, separated by spaces on the command line.

Generated Files and Locations
fiaccel generates files in the following locations:

Generates: In:

Platform-specific MEX files Current folder

HTML reports

(if errors or warnings occur during
compilation)

Default output folder:

fiaccel/mex/M_fcn_name/html

You can change the name and location of generated files by using the options
-o and -d when you run fiaccel.

In this example, you will use the fiaccel function to compile different parts
of a simple algorithm. By comparing the run times of the two cases, you will
see the benefits and best use of the fiaccel function.

Example: Comparing Run Times When Accelerating Different
Algorithm Parts
The algorithm used throughout this example replicates the functionality of
the MATLAB sum function, which sums the columns of a matrix. To see the
algorithm, type open fi_matrix_column_sum.m at the MATLAB command
line.

function B = fi_matrix_column_sum(A)
% Sum the columns of matrix A.
%#codegen

[m,n] = size(A);
w = get(A,'WordLength') + ceil(log2(m));
f = get(A,'FractionLength');
B = fi(zeros(1,n),true,w,f);
for j = 1:n

for i = 1:m
B(j) = B(j) + A(i,j);

8-17

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

end
end

Trial 1: Best Performance
The best way to speed up the execution of the algorithm is to compile the
entire algorithm using the fiaccel function. To evaluate the performance
improvement provided by the fiaccel function when the entire algorithm
is compiled, run the following code.

The first portion of code executes the algorithm using only MATLAB
functions. The second portion of the code compiles the entire algorithm using
the fiaccel function. The MATLAB tic and toc functions keep track of the
run times for each method of execution.

% MATLAB
fipref('NumericTypeDisplay','short');
A = fi(randn(1000,10));
tic
B = fi_matrix_column_sum(A)
t_matrix_column_sum_m = toc

% fiaccel
fiaccel fi_matrix_column_sum -args {A} ...
-I [matlabroot '/toolbox/fixedpoint/fidemos']
tic
B = fi_matrix_column_sum_mex(A);
t_matrix_column_sum_mex = toc

Trial 2: Worst Performance
Compiling only the smallest unit of computation using the fiaccel function
leads to much slower execution. In some cases, the overhead that results
from calling the mex function inside a nested loop can cause even slower
execution than using MATLAB functions alone. To evaluate the performance
of the mex function when only the smallest unit of computation is compiled,
run the following code.

The first portion of code executes the algorithm using only MATLAB functions.
The second portion of the code compiles the smallest unit of computation with
the fiaccel function, leaving the rest of the computations to MATLAB.

8-18

Accelerate Code Using fiaccel

% MATLAB
tic
[m,n] = size(A);
w = get(A,'WordLength') + ceil(log2(m));
f = get(A,'FractionLength');
B = fi(zeros(1,n),true,w,f);
for j = 1:n

for i = 1:m
B(j) = fi_scalar_sum(B(j),A(i,j));
% B(j) = B(j) + A(i,j);

end
end
t_scalar_sum_m = toc

% fiaccel
fiaccel fi_scalar_sum -args {B(1),A(1,1)} ...
-I [matlabroot '/toolbox/fixedpoint/fidemos']
tic
[m,n] = size(A);
w = get(A,'WordLength') + ceil(log2(m));
f = get(A,'FractionLength');
B = fi(zeros(1,n),true,w,f);
for j = 1:n

for i = 1:m
B(j) = fi_scalar_sum_mex(B(j),A(i,j));
% B(j) = B(j) + A(i,j);

end
end
t_scalar_sum_mex = toc

Ratio of Times
A comparison of Trial 1 and Trial 2 appears in the following table. Your
computer may record different times than the ones the table shows, but the
ratios should be approximately the same. There is an extreme difference
in ratios between the trial where the entire algorithm was compiled using
fiaccel (t_matrix_column_sum_mex.m) and where only the scalar sum was
compiled (t_scalar_sum_mex.m). Even the file with no fiaccel compilation
(t_matrix_column_sum_m) did better than when only the smallest unit of
computation was compiled using fiaccel (t_scalar_sum_mex).

8-19

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

X (Overall Performance
Rank)

Time X/Best X_m/X_mex

Trial 1: Best Performance

t_matrix_column_sum_m (2) 1.99759 84.4917

t_matrix_column_sum_mex
(1)

0.0236424 1

84.4917

Trial 2: Worst Performance

t_scalar_sum_m (4) 10.2067 431.71

t_scalar_sum_mex (3) 4.90664 207.536

2.08017

Data Type Override Using fiaccel
Fixed-Point Toolbox software ships with an example of how to generate
a MEX function from MATLAB code. The code in the example takes the
weighted average of a signal to create a lowpass filter. To run the example in
the Help browser select Examples under Fixed-Point Toolbox, and then select
Fixed-Point Lowpass Filtering Using MATLAB for Code Generation.

You can specify data type override in this example by typing an extra
command at the MATLAB prompt in the “Define Fixed-Point Parameters”
section of the example. To turn data type override on, type the following
command at the MATLAB prompt after running the reset(fipref)
command in that section:

fipref('DataTypeOverride','TrueDoubles')

This command tells Fixed-Point Toolbox software to create all fi objects with
type fi double. When you compile the code using the fiaccel command in
the “Compile the M-File into a MEX File” section of the example, the resulting
MEX-function uses floating-point data.

8-20

File Infrastructure and Paths Setup

File Infrastructure and Paths Setup

In this section...

“Compile Path Search Order” on page 8-21

“When to Use the Code Generation Path” on page 8-21

“Add Files to the Code Generation Path” on page 8-22

“Adding Folders to Search Paths” on page 8-22

“Naming Conventions” on page 8-22

Compile Path Search Order
fiaccel resolves function calls by searching first on the code generation
path and then on the MATLAB path. By default, fiaccel tries to compile
and generate code for functions it finds on the path unless you explicitly
declare the function to be extrinsic. An extrinsic function is a function on
the MATLAB path that is dispatched to MATLAB software for execution.
fiaccel does not compile extrinsic functions, but rather dispatches them to
MATLAB for execution.

When to Use the Code Generation Path
Use the code generation path to override a MATLAB function with a
customized version. Because fiaccel searches the code generation path first,
a MATLAB file on that path always shadows a MATLAB file of the same
name on the MATLAB path.

To override a MATLAB function with a customized version:

1 Create each version of the MATLAB function in identically named files.

2 Add the MATLAB version to the MATLAB path.

3 Add the customized version to the code generation path.

See “Adding Folders to Search Paths” on page 8-22.

8-21

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Add Files to the Code Generation Path
With fiaccel, you can prepend folders and files to the code generation path,
as described in “Adding Folders to Search Paths” on page 8-22. By default,
the code generation path contains the current folder and the toolbox functions
supported for code generation.

Adding Folders to Search Paths
To add folders to: Do this:

Code generation
path

Prepend folders to the code generation path by using
the fiaccel -I option.

MATLAB path Follow the instructions in in the MATLAB
Programming documentation.

Naming Conventions
MATLAB enforces naming conventions for functions and generated files.

• “Reserved Prefixes” on page 8-22

• “Reserved Keywords” on page 8-22

• “Conventions for Naming Generated files” on page 8-24

Reserved Prefixes
MATLAB reserves the prefix eml for global C functions and variables in
generated code. For example, run-time library function names all begin with
the prefix emlrt, such as emlrtCallMATLAB. To avoid naming conflicts, do not
name C functions or primary MATLAB functions with the prefix eml.

Reserved Keywords

• “C Reserved Keywords” on page 8-23

• “C++ Reserved Keywords” on page 8-23

• “Reserved Keywords for Code Generation” on page 8-24

8-22

File Infrastructure and Paths Setup

MATLAB Coder software reserves certain words for its own use as keywords
of the generated code language. MATLAB Coder keywords are reserved for
use internal to MATLAB Coder software and should not be used in MATLAB
code as identifiers or function names. C reserved keywords should also not be
used in MATLAB code as identifiers or function names. If your MATLAB code
contains any reserved keywords, the code generation build does not complete
and an error message is displayed. To address this error, modify your code
to use identifiers or names that are not reserved.

If you are generating C++ code using the MATLAB Coder software, in
addition, your MATLAB code must not contain the “C++ Reserved Keywords”
on page 8-23.

C Reserved Keywords.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

C++ Reserved Keywords.

catch friend protected try

class inline public typeid

const_cast mutable reinterpret_cast typename

delete namespace static_cast using

dynamic_cast new template virtual

explicit operator this wchar_t

export private throw

8-23

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Reserved Keywords for Code Generation.

abs fortran localZCE rtNaN

asm HAVESTDIO localZCSV SeedFileBuffer

bool id_t matrix SeedFileBufferLen

boolean_T int_T MODEL single

byte_T int8_T MT TID01EQ

char_T int16_T NCSTATES time_T

cint8_T int32_T NULL true

cint16_T int64_T NUMST TRUE

cint32_T INTEGER_CODE pointer_T uint_T

creal_T LINK_DATA_BUFFER_SIZE PROFILING_ENABLED uint8_T

creal32_T LINK_DATA_STREAM PROFILING_NUM_SAMPLES uint16_T

creal64_T localB real_T uint32_T

cuint8_T localC real32_T uint64_T

cuint16_T localDWork real64_T UNUSED_PARAMETER

cuint32_T localP RT USE_RTMODEL

ERT localX RT_MALLOC VCAST_FLUSH_DATA

false localXdis rtInf vector

FALSE localXdot rtMinusInf

Conventions for Naming Generated files
MATLAB provides platform-specific extensions for MEX files.

Platform MEX File Extension

Linux® x86-64 .mexa64

Windows (32-bit) .mexw32

Windows x64 .mexw64

8-24

Detect and Debug Code Generation Errors

Detect and Debug Code Generation Errors

In this section...

“Debugging Strategies” on page 8-25

“Error Detection at Design Time” on page 8-26

“Error Detection at Compile Time” on page 8-26

Debugging Strategies
To prepare your algorithms for code generation, MathWorks recommends
that you choose a debugging strategy for detecting and correcting violations
in your MATLAB applications, especially if they consist of a large number of
MATLAB files that call each other’s functions. Here are two best practices:

Debugging
Strategy

What to Do Pros Cons

Bottom-up
verification 1 Verify that your lowest-level

(leaf) functions are suitable
for code generation.

2 Work your way up
the function hierarchy
incrementally to compile
and verify each function,
ending with the top-level
function.

• Efficient

• Safe

• Easy to
isolate
syntax
violations

Requires application tests that
work from the bottom up

8-25

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Debugging
Strategy

What to Do Pros Cons

Top-down
verification 1 Declare all functions called

by the top-level function to
be extrinsic so fiaccel does
not compile them.

2 Verify that your top-level
function is suitable for code
generation.

3 Work downward in the
function hierarchy to:

a. Remove extrinsic
declarations one by one

b. Compile and verify each
function, ending with the
leaf functions.

Lets you retain
your top-level
tests

Introduces extraneous code that
you must remove after code
verification, including:

• Extrinsic declarations

• Additional assignment
statements as necessary
to convert opaque values
returned by extrinsic
functions to nonopaque
values.

Error Detection at Design Time
To detect potential issues for MEX file building as you write your MATLAB
algorithm, add the %#codegen directive to the code that you want fiaccel
to compile. Adding this directive indicates that you intend to generate code
from the algorithm and turns on detailed diagnostics during MATLAB code
analysis (see in the MATLAB Desktop Tools and Development Environment
documentation).

Error Detection at Compile Time
Before you can successfully generate code from a MATLAB algorithm, you
must verify that the algorithm does not contain syntax and semantics
violations that would cause compile-time errors, as described in “Detect and
Debug Code Generation Errors” on page 8-25.

8-26

Detect and Debug Code Generation Errors

fiaccel checks for all potential syntax violations at compile time. When
fiaccel detects errors or warnings, it automatically produces a code
generation report that describes the issues and provides links to the offending
code. See “Create and Use Fixed-Point Code Generation Reports” on page
8-52.

If your MATLAB code calls functions on the MATLAB path, fiaccel attempts
to compile these functions unless you declare them to be extrinsic.

8-27

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Set Up C Code Compilation Options

In this section...

“C Code Compiler Configuration Object” on page 8-28

“Compilation Options Modification at the Command Line Using Dot
Notation” on page 8-28

“How fiaccel Resolves Conflicting Options” on page 8-29

C Code Compiler Configuration Object
For C code generation to a MEX file, MATLAB provides a configuration object
coder.MEXConfig for fine-tuning the compilation. To set MEX compilation
options:

1 Define the compiler configuration object in the MATLAB workspace by
issuing a constructor command:

comp_cfg = coder.mexconfig

MATLAB displays the list of compiler options and their current values in
the command window.

2 Modify the compilation options as necessary. See “Compilation Options
Modification at the Command Line Using Dot Notation” on page 8-28

3 Invoke fiaccel with the -config option and specify the configuration
object as its argument:

fiaccel -config comp_cfg myMfile

The -config option instructs fiaccel to convert myFile.m to a MEX
function, based on the compilation settings in comp_cfg.

Compilation Options Modification at the Command
Line Using Dot Notation
Use dot notation to modify the value of compilation options, using this syntax:

configuration_object.property = value

8-28

Set Up C Code Compilation Options

Dot notation uses assignment statements to modify configuration object
properties. For example, to change the maximum size function to inline and
the stack size limit for inlined functions during MEX generation, enter this
code at the command line:

co_cfg = coder.MEXConfig
co_cfg.InlineThreshold = 25;
co_cfg.InlineStackLimit = 4096;
fiaccel -config co_cfg myFun

How fiaccel Resolves Conflicting Options
fiaccel takes the union of all options, including those specified using
configuration objects, so that you can specify options in any order.

8-29

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

MEX Configuration Dialog Box Options
MEX Configuration Dialog Box Options

The following table describes parameters for fine-tuning the behavior of
fiaccel for converting MATLAB files to MEX:

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Report

Create code generation report GenerateReport
true, false

Document generated code in
an HTML report.

Launch report automatically LaunchReport
true, false

Specify whether to
automatically display HTML
reports after code generation
completes.

Note Requires that you
enable Create code
generation report

Debugging

Echo expressions without
semicolons

EchoExpressions
true, false

Specify whether or not actions
that do not terminate with
a semicolon appear in the
MATLAB Command Window.

Enable debug build EnableDebugging
true, false

Compile the generated code in
debug mode.

Language and Semantics

Constant Folding Timeout ConstantFoldingTimeout
integer, 10000

Specify the maximum number
of instructions to be executed
by the constant folder.

8-30

MEX Configuration Dialog Box Options

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Dynamic memory allocation DynamicMemoryAllocation
'off',
'AllVariableSizeArrays'

Enable dynamic memory
allocation for variable-size
data. By default, dynamic
memory allocation is disabled
and fiaccel allocates memory
statically on the stack. When
you select dynamic memory
allocation, fiaccel allocates
memory for all variable-size
data dynamically on the heap.

Youmust use dynamic memory
allocation for all unbounded
variable-size data.

Enable variable sizing EnableVariableSizing
true, false

Enable support for
variable-size arrays.

8-31

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Extrinsic calls ExtrinsicCalls
true, false

Allow calls to extrinsic
functions.

When enabled (true), the
compiler generates code for the
call to a MATLAB function,
but does not generate the
function’s internal code.

When disabled (false), the
compiler ignores the extrinsic
function. Does not generate
code for the call to the
MATLAB function—as long
as the extrinsic function does
not affect the output of the
caller function. Otherwise,
the compiler issues a compiler
error.

8-32

MEX Configuration Dialog Box Options

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Global Data Synchronization
Mode

GlobalDataSyncMethod
string,SyncAlways,
SyncAtEntryAndExits,
NoSync

Controls when global data
is synchronized with the
MATLAB global workspace.
By default, (SyncAlways),
synchronizes global data
at MEX function entry and
exit and for all extrinsic
calls. This synchronization
ensures maximum consistency
between MATLAB and
generated code. If the
extrinsic calls do not affect
global data, use this option
with the coder.extrinsic
-sync:off option to turn off
synchronization for these calls.

SyncAtEntryAndExits
synchronizes global data
at MEX function entry
and exit only. If only a
few extrinsic calls affect
global data, use this option
with the coder.extrinsic
-sync:on option to turn on
synchronization for these calls.

NoSync disables
synchronization. Ensure that
your generated code does not
interact with MATLAB before
disabling synchronization.
Otherwise, inconsistencies
might occur.

8-33

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Saturate on integer overflow SaturateOnIntegerOverflow
true, false

Add checks in the generated
code to detect integer overflow
or underflow.

Safety (disable for faster MEX)

Ensure memory integrity IntegrityChecks
true, false

Detects violations of memory
integrity in code generated
from MATLAB algorithms
and stops execution with a
diagnostic message. Setting
IntegrityChecks to false
also disables the run-time
stack.

Ensure responsiveness ResponsivenessChecks
true, false

Enables responsiveness
checks in code generated from
MATLAB algorithms.

Function Inlining and Stack Allocation

Inline Stack Limit InlineStackLimit
integer, 4000

Specify the stack size limit on
inlined functions.

Inline Threshold InlineThreshold
integer, 10

Specify the maximum size of
functions to be inlined.

Inline Threshold Max InlineThresholdMax
integer, 200

Specify the maximum size of
functions after inlining.

Stack Usage Max StackUsageMax
integer, 200000

Specify the maximum stack
usage per application in
bytes. Set a limit that is
lower than the available stack
size. Otherwise, a runtime
stack overflow might occur.
Overflows are detected and
reported by the C compiler, not
by fiaccel.

8-34

MEX Configuration Dialog Box Options

Parameter Equivalent Command-Line
Property and Values
(default in bold)

Description

Optimizations

Use BLAS library if possible EnableBLAS
true, false

Speed up low-level matrix
operations during simulation
by calling the Basic Linear
Algebra Subprograms (BLAS)
library.

See Also

• “Control Run-Time Checks” on page 8-71

• “Variable-Size Data Definition for Code Generation” on page 21-3

• “Generate C Code from Code Containing Global Data” on page 8-57

8-35

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Specify Primary Function Input Properties

In this section...

“Why You Must Specify Input Properties” on page 8-36

“Properties to Specify” on page 8-36

“Rules for Specifying Properties of Primary Inputs” on page 8-39

“Methods for Defining Properties of Primary Inputs” on page 8-40

“Input Properties Definition by Example at the Command Line” on page
8-40

Why You Must Specify Input Properties
To generate code in a statically typed language, fiaccel must determine the
properties of all variables in the MATLAB code at compile time. Therefore,
you must specify the class, size, and complexity of inputs to the primary
function (also known as the top-level or entry-point function). If your primary
function has no input parameters, fiaccel can compile your MATLAB
algorithm without modification. You do not need to specify properties of
inputs to local or external functions called by the primary function. For
fiaccel requirements, refer to its reference page.

Properties to Specify
If your primary function has inputs, you must specify the following properties
for each input:

8-36

Specify Primary Function Input Properties

Specify Properties:For:

Class Size Complexity numerictype fimath

Fixed-point
inputs

Structure
inputs*

(if structure
field is
fixed-point)

(if
structure
field is
fixed-point)

All other
inputs

* When a primary input is a structure, fiaccel treats each field as a separate
input.

Default Property Values
fiaccel assigns the following default values for properties of primary
function inputs:

Property Default

class double

size scalar

complexity real

numerictype No default

fimath MATLAB default fimath object

Specifying Default Values for Structure Fields. In most cases, fiaccel
uses defaults when you don’t explicitly specify values for properties—except
for structure fields. The only way to name a field in a structure is to set at
least one of its properties. Therefore, you may need to specify default values
for properties of structure fields. For examples, see “Example: Specifying
Class and Size of Scalar Structure” on page 8-69 and “Example: Specifying
Class and Size of Structure Array” on page 8-70.

8-37

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Specifying Default fimath Values for MEX Functions. MEX functions
generated with fiaccel use the MATLAB default fimath. The MATLAB
factory default fimath has the following properties:

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision
SumMode: FullPrecision

For more information, see “fimath Object Construction” on page 4-2.

When running MEX functions that depend on the MATLAB default fimath
value, do not change this value during your MATLAB session. Otherwise, you
receive a run-time error, alerting you to a mismatch between the compile-time
and run-time fimath values.

For example, suppose you define the following MATLAB function test:

function y = test %#codegen
y = fi(0);

The function test constructs a fi object without explicitly specifying a fimath
object. Therefore, test will rely on the default fimath object at compile time.
At the MATLAB prompt, generate the MEX function text_mex to use the
factory setting of the MATLAB default fimath:

fiaccel test
% fiaccel generates a MEX function, test_mex,
% in the current folder

Next, run test_mex to display the MATLAB default fimath value:

test_mex

ans =

0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

8-38

Specify Primary Function Input Properties

FractionLength: 15

Supported Classes
The following table presents the class names supported by fiaccel:

Class Name Description

logical Logical array of true and false values

char Character array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

single Single-precision floating-point or
fixed-point number array

double Double-precision floating-point or
fixed-point number array

struct Structure array

embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs
Follow these rules when specifying the properties of primary inputs:

• For each primary function input whose class is fixed point (fi), you must
specify the input’s numerictype and fimath properties.

• For each primary function input whose class is struct, you must specify
the properties of each of its fields in the order that they appear in the
structure definition.

8-39

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Methods for Defining Properties of Primary Inputs
You can use any of the following methods to define the properties of primary
function inputs:

Method Pros Cons

“Input Properties Definition
by Example at the Command
Line” on page 8-40

• Easy to use

• Does not alter original
MATLAB code

• Designed for prototyping a
function that has a small
number of primary inputs

• Must be specified at the
command line every time
you invoke fiaccel (unless
you use a script)

• Not efficient for specifying
memory-intensive inputs
such as large structures
and arrays

“Define Input Properties
Programmatically in MATLAB
File” on page 8-63

• Integrated with MATLAB
code so you do not need to
redefine properties each
time you invoke fiaccel

• Provides documentation of
property specifications in
the MATLAB code

• Efficient for specifying
memory-intensive inputs
such as large structures

• Uses complex syntax

Note To specify the properties of inputs for any given primary function, use
one of these methods or the other, but not both.

Input Properties Definition by Example at the
Command Line

• “Command Line Option -args” on page 8-41

• “Rules for using the -args option” on page 8-42

• “Specifying Constant Inputs” on page 8-43

8-40

Specify Primary Function Input Properties

• “Specifying Variable-Size Inputs” on page 8-44

Command Line Option -args
fiaccel provides a command-line option -args for specifying the properties
of primary function inputs as a cell array of example values. The cell array
can be a variable or literal array of constant values.

Example: Specifying Properties of Primary Inputs by Example.
Consider a function that adds its two inputs:

function y = emcf(u,v) %#codegen
% The directive %#codegen indicates that you
% intend to generate code for this algorithm
y = u + v;

The following examples show how to specify different properties of the
primary inputs u and v by example at the command line:

• Use a literal cell array of constants to specify that both inputs are real,
scalar, fixed-point values:

fiaccel -o emcfx emcf ...
-args {fi(0,1,16,15),fi(0,1,16,15)}

• Use a literal cell array of constants to specify that input u is an unsigned
16-bit, 1-by-4 vector and input v is a scalar, fixed-point value:

fiaccel -o emcfx emcf ...
-args {zeros(1,4,'uint16'),fi(0,1,16,15)}

• Assign sample values to a cell array variable to specify that both inputs are
real, unsigned 8-bit integer vectors:

a = fi([1;2;3;4],0,8,0)
b = fi([5;6;7;8],0,8,0)
ex = {a,b}
fiaccel -o emcfx emcf -args ex

Example: Specifying Properties of Primary Fixed-Point Inputs by
Example. Consider a function that calculates the square root of a fixed-point
number:

8-41

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

function y = sqrtfi(x) %#codegen
y = sqrt(x);

To specify the properties of the primary fixed-point input x by example on the
MATLAB command line, follow these steps:

1 Define the numerictype properties for x, as in this example:

T = numerictype('WordLength',32,...

'FractionLength',23,'Signed',true);

2 Define the fimath properties for x, as in this example:

F = fimath('SumMode','SpecifyPrecision',...

'SumWordLength',32,'SumFractionLength',23,...

'ProductMode','SpecifyPrecision', ...

ProductWordLength',32,'ProductFractionLength',23);

3 Create a fixed-point variable with the numerictype and fimath properties
you just defined, as in this example:

myeg = { fi(4.0,T,F) };

4 Compile the function sqrtfi using the fiaccel command, passing the
variable myeg as the argument to the-args option, as in this example:

fiaccel sqrtfi -args myeg;

Rules for using the -args option
Follow these rules when using the -args command-line option to define
properties by example:

• The cell array of sample values must contain the same number of elements
as primary function inputs.

• The order of elements in the cell array must correspond to the order in
which inputs appear in the primary function signature — for example, the
first element in the cell array defines the properties of the first primary
function input.

8-42

Specify Primary Function Input Properties

Specifying Constant Inputs
In cases where you know your primary inputs will not change at run time,
you can specify them as constant values than as variables to eliminate
unnecessary overhead in generated code. Common uses of constant inputs are
for flags that control how an algorithm executes and values that specify the
sizes or types of data.

You can define inputs to be constants using this command-line option:

-args {coder.Constant(constant_input)}

This expression specifies that an input will be a constant with the size, class,
complexity, and value of constant_input.

Calling Functions with Constant Inputs. fiaccel compiles constant
function inputs into the generated code. As a result, the MEX function
signature differs from the MATLAB function signature. At run time you
supply the constant argument to the MATLAB function, but not to the MEX
function.

For example, consider the following function identity which copies its input
to its output:

function y = identity(u) %#codegen
y = u;

To generate a MEX function identity_mex with a constant input, type the
following command at the MATLAB prompt:

fiaccel -o identity_mex identity...
-args {coder.Constant(fi(0.1,1,16,15))}

To run the MATLAB function, supply the constant argument as follows:

identity(fi(0.1,1,16,15))

You get the following result:

ans =

0.1000

8-43

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Now, try running the MEX function with this command:

identity_mex

You should get the same answer.

Example: Specifying a Structure as a Constant Input. Suppose you
define a structure tmp in the MATLAB workspace to specify the dimensions of
a matrix, as follows:

tmp = struct('rows', 2, 'cols', 3);

The following MATLAB function rowcol accepts a structure input p to define
matrix y:

function y = rowcol(u,p) %#codegen
y = fi(zeros(p.rows,p.cols),1,16,15) + u;

The following example shows how to specify that primary input u is a double
scalar variable and primary input p is a constant structure:

fiaccel rowcol ...
-args {fi(0,1,16,15),coder.Constant(tmp)}

To run this code, use

u = fi(0.5,1,16,15)
y_m = rowcol(u,tmp)

y_mex = rowcol_mex(u)

Specifying Variable-Size Inputs
Variable-size data is data whose size might change at run time. MATLAB
supports bounded and unbounded variable-size data for code generation.

• Bounded variable-size data has fixed upper bounds; this data can be
allocated statically on the stack or dynamically on the heap.

• Unbounded variable-size data does not have fixed upper bounds; this data
must be allocated on the heap.

8-44

Specify Primary Function Input Properties

You can define inputs to have one or more variable-size dimensions and
specify their upper bounds using the -args option:

Expression Description

8-45

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Expression Description

-args {coder.typeof(example_value, size_vector,
dim_vector)}

Specifies a variable-size input
with:

• Same class and complexity as
example_value

• Same size and upper bounds
as size_vector

dim_vector specifies which
dimensions are variable. A
value of true or one means that
the corresponding dimension is
variable. A value of false or zero
means that the corresponding
dimension is fixed.

Example: Specifying a Variable-Size Vector Input.

1 Write a function that computes the sum of every n elements of a vector A
and stores them in a vector B:

function B = nway(A,n) %#codegen
% Compute sum of every N elements of A and put them in B.

coder.extrinsic('error');
Tb = numerictype(1,32,24);
if ((mod(numberofelements(A),n) == 0) && ...

(n>=1 && n<=numberofelements(A)))
B = fi(zeros(1,numberofelements(A)/n),Tb);
k = 1;
for i = 1 : numberofelements(A)/n

B(i) = sum(A(k + (0:n-1)));
k = k + n;

end
else

B = fi(zeros(1,0),Tb);
error('n<=0 or does not divide evenly');

8-46

Specify Primary Function Input Properties

end

2 Specify the first input A as a fi object. Its first dimension stays fixed in
size and its second dimension can grow to an upper bound of 100. Specify
the second input n as a double scalar.

fiaccel nway ...
-args {coder.typeof(fi(0,1,16,15),[1 100],1),0}...
-report

Note You do not need to explicitly cast these inputs as double because
fiaccel assumes the default properties of inputs are real, double scalars.

3 As an alternative, assign the coder.typeof expression to a MATLAB
variable, then pass the variable as an argument to -args:

vareg = coder.typeof(fi(0,1,16,15),[1 100],1)
fiaccel nway -args {vareg, double(0)}

Note For comparison, this command does explicitly cast the inputs to
double.

8-47

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Best Practices for Accelerating Fixed-Point Code

In this section...

“Recommended Compilation Options for fiaccel” on page 8-48

“Build Scripts” on page 8-49

“Check Code Interactively Using MATLAB Code Analyzer” on page 8-50

“Separating Your Test Bench from Your Function Code” on page 8-51

“Preserving Your Code” on page 8-51

“File Naming Conventions” on page 8-51

Recommended Compilation Options for fiaccel

• -args – Specify input parameters by example

Use the -args option to specify the properties of primary function inputs as
a cell array of example values at the same time as you generate code for
the MATLAB file with fiaccel. The cell array can be a variable or literal
array of constant values. The cell array should provide the same number
and order of inputs as the primary function.

When you use the -args option you are specifying the data types and array
dimensions of these parameters, not the values of the variables. For more
information, see “Define Input Properties by Example at the Command
Line” in the MATLAB Coder documentation.

Note Alternatively, you can use the assert function to define properties
of primary function inputs directly in your MATLAB file. For more
information, see “Define Input Properties Programmatically in MATLAB
File” on page 8-63.

• -report – Generate code generation report

Use the -report option to generate a report in HTML format at code
generation time to help you debug your MATLAB code and verify that it

8-48

Best Practices for Accelerating Fixed-Point Code

is suitable for code generation. If you do not specify the -report option,
fiaccel generates a report only if build errors or warnings occur.

The code generation report contains the following information:

- Summary of code generation results, including type of target and
number of warnings or errors

- Target build log that records build and linking activities

- Links to generated files

- Error and warning messages (if any)

For more information, see fiaccel.

Build Scripts
Use build scripts to call fiaccel to generate MEX functions from your
MATLAB function.

A build script automates a series of MATLAB commands that you want to
perform repeatedly from the command line, saving you time and eliminating
input errors. For instance, you can use a build script to clear your workspace
before each build and to specify code generation options.

This example shows a build script to run fiaccel to process lms_02.m:

close all;
clear all;
clc;

N = 73113;

fiaccel -report lms_02.m ...
-args { zeros(N,1) zeros(N,1) }

In this example, the following actions occur:

• close all deletes all figures whose handles are not hidden. See close in
the MATLAB Graphics function reference for more information.

8-49

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

• clear all removes all variables, functions, and MEX-files from memory,
leaving the workspace empty. This command also clears all breakpoints.

Note Remove the clear all command from the build scripts if you want
to preserve breakpoints for debugging.

• clc clears all input and output from the Command Window display, giving
you a “clean screen.”

• N = 73113 sets the value of the variable N, which represents the number of
samples in each of the two input parameters for the function lms_02

• fiaccel -report lms_02.m -args { zeros(N,1) zeros(N,1) } calls
fiaccel to accelerate simulation of the file lms_02.m using the following
options:

- -report generates a code generation report

- -args { zeros(N,1) zeros(N,1) } specifies the properties of the
function inputs as a cell array of example values. In this case, the input
parameters are N-by-1 vectors of real doubles.

Check Code Interactively Using MATLAB Code
Analyzer
The code analyzer checks your code for problems and recommends
modifications to maximize performance and maintainability. You can use
the code analyzer to check your code continuously in the MATLAB Editor
while you work.

To ensure that continuous code checking is enabled:

1 From the MATLAB menu, select File > Preferences > Code Analyzer.

The list of code analyzer preferences appears.

2 Select the Enable integrated warning and error messages check box.

8-50

Best Practices for Accelerating Fixed-Point Code

Separating Your Test Bench from Your Function Code
Separate your core algorithm from your test bench. Create a separate test
script to do all the pre- and post-processing such as loading inputs, setting
up input values, calling the function under test, and outputting test results.
See the example on the fiaccel reference page.

Preserving Your Code
Preserve your code before making further modifications. This practice
provides a fallback in case of error and a baseline for testing and validation.
Use a consistent file naming convention, as described in “File Naming
Conventions” on page 8-51. For example, add a 2-digit suffix to the file name
for each file in a sequence. Alternatively, use a version control system.

File Naming Conventions
Use a consistent file naming convention to identify different types and
versions of your MATLAB files. This approach keeps your files organized
and minimizes the risk of overwriting existing files or creating two files with
the same name in different folders.

For example, the file naming convention in the Generating MEX Functions
getting started tutorial is:

• The suffix _build identifies a build script.

• The suffix _test identifies a test script.

• A numerical suffix, for example, _01 identifies the version of a file. These
numbers are typically two-digit sequential integers, beginning with 01,
02, 03, and so on.

For example:

• The file build_01.m is the first version of the build script for this tutorial.

• The file test_03.m is the third version of the test script for this tutorial.

8-51

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Create and Use Fixed-Point Code Generation Reports

In this section...

“Code Generation Report Creation” on page 8-52

“Code Generation Report Opening” on page 8-53

“Viewing Your MATLAB Code” on page 8-53

“Viewing Variables in the Variables Tab” on page 8-55

“See Also” on page 8-56

Code Generation Report Creation
When you compile your code with the fiaccel function or the MATLAB
Coder codegen function, you can use the -report option to generate a code
generation report. This report allows you to examine the data types of the
variables and expressions in your code.

To see an example of the code generation report generated by the fiaccel
function, compile cordic_atan_kernel.m. This file ships as a part of the
Fixed-Point ATAN2 Calculation example. You can open the file by typing the
following at the MATLAB command line:

open cordic_atan_kernel

To compile the cordic_atan_kernel file, you must provide inputs x, y, N, and
angleLUT. This example uses the following input values:

x = fi(0.23);
y = x;
N = 12;
Tz = numerictype(1,16,13);
angleLUT = fi(atan(2.^-(0:N-1)), 'NumericType', Tz);

After you define the input variables in the MATLAB workspace, change your
working folder to a local folder and compile the file using fiaccel. Use the
-report option to generate the code generation report:

fiaccel cordic_atan_kernel -args {x,y,N,angleLUT} -report

8-52

Create and Use Fixed-Point Code Generation Reports

Code Generation Report Opening
If the compilation is successful, you receive the following message:

Code generation successful: View report

Click the View report link to view the report.

If the compilation fails, a link to the error report appears:

Code generation failed: View report

Click the View report link to view the error report and debug your code.
For more information on working with error reports, see “Code Generation
Reports” in the MATLAB Coder documentation.

Viewing Your MATLAB Code
When the code generation report opens, you can hover your cursor over the
variables and expressions in your MATLAB code to see their data type
information. The code generation report provides color-coded data type
information according to the following legend.

Color Meaning

Green Data type information is available for the
selected variable at this location in the code.

Orange There is a warning message associated with
the selected variable or expression.

Pink No data type information is available for the
selected variable.

Purple Data type information is available for the
selected expression at this location in the
code.

Red There is an error message associated with the
selected variable or expression.

Variables in your code that have data type information available appear
highlighted in green, as shown in the following figure.

8-53

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Expressions in your code that have data type information available appear
highlighted in purple, as the next figure shows.

8-54

Create and Use Fixed-Point Code Generation Reports

Viewing Variables in the Variables Tab
To see the data type information for all the variables in your file, click the
Variables tab of the code generation report. You can expand all fi and
fimath objects listed in the Variables tab to display the fimath properties.
When you expand a fi object in the Variables tab, the report indicates
whether the fi object has a local fimath object or is using default fimath
values.

The following figure shows the information displayed for a fi object that is
using default fimath values.

8-55

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

You can sort the variables by clicking the column headings in the Variables
tab. To sort the variables by multiple columns, press the Shift key while
clicking the column headings.

See Also
For more information about using the code generation report with the
fiaccel function, see the fiaccel reference page.

For information about local and default fimath, see “fimath Object
Construction” on page 4-2.

For information about using the code generation report with the
codegen function, see “Code Generation Reports” in the MATLAB Coder
documentation.

8-56

Generate C Code from Code Containing Global Data

Generate C Code from Code Containing Global Data

In this section...

“Workflow Overview” on page 8-57

“Declaring Global Variables” on page 8-57

“Defining Global Data” on page 8-58

“Synchronizing Global Data with MATLAB” on page 8-59

“Limitations of Using Global Data” on page 8-62

Workflow Overview
To generate MEX functions from MATLAB code that uses global data:

1 Declare the variables as global in your code.

2 Define and initialize the global data before using it.

For more information, see “Defining Global Data” on page 8-58.

3 Compile your code using fiaccel.

If you use global data, you must also specify whether you want to synchronize
this data between MATLAB and the generated code. If there is no
interaction between MATLAB and the generated code, it is safe to disable
synchronization. Otherwise, you should enable synchronization. For more
information, see “Synchronizing Global Data with MATLAB” on page 8-59.

Declaring Global Variables
For code generation, you must declare global variables before using them in
your MATLAB code. Consider the use_globals function that uses two global
variables AR and B.

function y = use_globals()
%#codegen
% Turn off inlining to make
% generated code easier to read
coder.inline('never');

8-57

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

% Declare AR and B as global variables
global AR;
global B;
AR(1) = B(1);
y = AR * 2;

Defining Global Data
You can define global data either in the MATLAB global workspace or at
the command line. If you do not initialize global data at the command line,
fiaccel looks for the variable in the MATLAB global workspace. If the
variable does not exist, fiaccel generates an error.

Defining Global Data in the MATLAB Global Workspace
To compile the use_globals function described in “Declaring Global
Variables” on page 8-57 using fiaccel:

1 Define the global data in the MATLAB workspace. At the MATLAB
prompt, enter:

global AR B;
AR = fi(ones(4),1,16,14);
B = fi([1 2 3],1,16,13);

2 Compile the function to generate a MEX file named use_globalsx.

fiaccel -o use_globalsx use_globals

Defining Global Data at the Command Line
To define global data at the command line, use the fiaccel -global option.
For example, to compile the use_globals function described in “Declaring
Global Variables” on page 8-57, specify two global inputs AR and B at the
command line.

fiaccel -o use_globalsx ...
-global {'AR',fi(ones(4)),'B',fi([1 2 3])} use_globals

Alternatively, specify the type and initial value with the -globals flag using
the format -globals {'g', {type, initial_value}}.

8-58

Generate C Code from Code Containing Global Data

Defining Variable-Sized Global Data. To provide initial values for
variable-sized global data, specify the type and initial value with the
-globals flag using the format -globals {'g', {type, initial_value}}.
For example, to specify a global variable g1 that has an initial value [1 1]
and upper bound [2 2], enter:

fiaccel foo -globals {'g1',{coder.typeof(0,[2 2],1),[1 1]}}

For a detailed explanation of coder.typeof syntax, see coder.typeof.

Synchronizing Global Data with MATLAB

Why Synchronize Global Data?
The generated code and MATLAB each have their own copies of global data.
To ensure consistency, you must synchronize their global data whenever the
two interact. If you do not synchronize the data, their global variables might
differ. The level of interaction determines when to synchronize global data.

When to Synchronize Global Data
By default, synchronization between global data in MATLAB and generated
code occurs at MEX function entry and exit and for all extrinsic calls, which
are calls to MATLAB functions on the MATLAB path that fiaccel dispatches
to MATLAB for execution. This behavior ensures maximum consistency
between generated code and MATLAB.

To improve performance, you can:

• Select to synchronize only at MEX function entry and exit points.

• Disable synchronization when the global data does not interact.

• Choose whether to synchronize before and after each extrinsic call.

The following table summarizes which global data synchronization options
to use. To learn how to set these options, see “How to Synchronize Global
Data” on page 8-60.

8-59

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Global Data Synchronization Options

If you want to... Set the
global data
synchronization
mode to:

Synchronize before
and after extrinsic
calls?

Ensure maximum
consistency when all
extrinsic calls modify global
data.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Default behavior.

Ensure maximum
consistency when most
extrinsic calls modify global
data, but a few do not.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Use the
coder.extrinsic
-sync:off option to
turn off synchronization
for the extrinsic calls that
do not affect global data.

Ensure maximum
consistency when most
extrinsic calls do not modify
global data, but a few do.

At MEX-function
entry and exit

Yes. Use the
coder.extrinsic
-sync:on option to
synchronize only the calls
that modify global data

Maximize performance
when synchronizing global
data, and none of your
extrinsic calls modify global
data.

At MEX-function
entry and exit

No.

Communicate between
generated code files only.
No interaction between
global data in MATLAB
and generated code.

Disabled No.

How to Synchronize Global Data
To control global data synchronization, set the global data synchronization
mode and select whether to synchronize extrinsic functions. For guidelines on
which options to use, see “When to Synchronize Global Data” on page 8-59.

8-60

Generate C Code from Code Containing Global Data

You control the synchronization of global data with extrinsic functions using
the coder.extrinsic -sync:on and -sync:off options.

Controlling the Global Data Synchronization Mode from the
Command Line.

1 Define the compiler options object in the MATLAB workspace by issuing a
constructor command:

comp_cfg = coder.mexconfig

2 From the command line, set the GlobalDataSyncMethod property to
Always, SyncAtEntryAndExits or NoSync, as applicable. For example:

comp_cfg.GlobalDataSyncMethod = 'SyncAtEntryAndExits';

3 Use the comp_cfg configuration object when compiling your code by
specifying it using the -config compilation option. For example,

fiaccel -config comp_cfg myFile

Controlling Synchronization for Extrinsic Function Calls. You can
control whether synchronization between global data in MATLAB and
generated code occurs before and after you call an extrinsic function. To do so,
use the coder.extrinsic -sync:on and -sync:off options.

By default, global data is:

• Synchronized before and after each extrinsic call if the global data
synchronization mode is At MEX-function entry, exit and extrinsic
calls. If you are sure that certain extrinsic calls do not affect global
data, turn off synchronization for these calls using the -sync:off option.
Turning off synchronization improves performance. For example, if
functions foo1 and foo2 do not affect global data, turn off synchronization
for these functions:

coder.extrinsic('-sync:off', 'foo1', 'foo2');

• Not synchronized if the global data synchronization mode is At
MEX-function entry and exit. If the code has a few extrinsic calls
that affect global data, turn on synchronization for these calls using the

8-61

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

-sync:on option. For example, if functions foo1 and foo2 do affect global
data, turn on synchronization for these functions:

coder.extrinsic('-sync:on', 'foo1', 'foo2');

• Not synchronized if the global data synchronization mode is Disabled.
When synchronization is disabled, you cannot control the synchronization
for specific extrinsic calls. The -sync:on option has no effect.

Limitations of Using Global Data
You cannot use global data with

• The coder.cstructname function. This function does not support global
variables.

• The coder.varsize function. Instead, use a coder.typeof object to define
variable-sized global data as described in “Defining Variable-Sized Global
Data” on page 8-59.

8-62

Define Input Properties Programmatically in MATLAB® File

Define Input Properties Programmatically in MATLAB File

In this section...

“How to Use assert” on page 8-63

“Rules for Using assert Function” on page 8-67

“Example: Specifying Properties of Primary Fixed-Point Inputs” on page
8-68

“Example: Specifying Class and Size of Scalar Structure” on page 8-69

“Example: Specifying Class and Size of Structure Array” on page 8-70

How to Use assert
You can use the MATLAB assert function to define properties of primary
function inputs directly in your MATLAB file.

Use the assert function to invoke standard MATLAB functions for specifying
the class, size, and complexity of primary function inputs.

Specify Any Class

assert (isa (param, 'class_name'))

Sets the input parameter param to the MATLAB class class_name. For
example, to set the class of input U to a 32-bit signed integer, call:

...
assert(isa(U,'embedded.fi'));
...

8-63

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Note If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 8-66.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 8-67.

If you set the class of an input parameter to struct, you must specify the
properties of each field in the structure in the order in which you define the
fields in the structure definition.

Specify fi Class

assert (isfi (param))
assert (isa (param, 'embedded.fi'))

Sets the input parameter param to the MATLAB class fi (fixed-point numeric
object). For example, to set the class of input U to fi, call:

...
assert(isfi(U));
...

or

...
assert(isa(U,'embedded.fi'));
...

Note If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 8-66.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 8-67.

Specify Structure Class

assert (isstruct (param))

8-64

Define Input Properties Programmatically in MATLAB® File

Sets the input parameter param to the MATLAB class struct (structure). For
example, to set the class of input U to a struct, call:

...
assert(isstruct(U));
...

or

...
assert(isa(U,'struct'));
...

Note If you set the class of an input parameter to struct, you must specify
the properties of each field in the structure in the order in which you define
the fields in the structure definition.

Specify Any Size

assert (all (size (param) == [dims]))

Sets the input parameter param to the size specified by dimensions dims. For
example, to set the size of input U to a 3-by-2 matrix, call:

...
assert(all(size(U)== [3 2]));
...

Specify Scalar Size

assert (isscalar (param))
assert (all (size (param) == [1]))

Sets the size of input parameter param to scalar. For example, to set the
size of input U to scalar, call:

...
assert(isscalar(U));
...

8-65

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

or

...
assert(all(size(U)== [1]));
...

Specify Real Input

assert (isreal (param))

Specifies that the input parameter param is real. For example, to specify
that input U is real, call:

...
assert(isreal(U));
...

Specify Complex Input

assert (~isreal (param))

Specifies that the input parameter param is complex. For example, to specify
that input U is complex, call:

...
assert(~isreal(U));
...

Specify numerictype of Fixed-Point Input

assert (isequal (numerictype (fiparam), T))

Sets the numerictype properties of fi input parameter fiparam to the
numerictype object T. For example, to specify the numerictype property of
fixed-point input U as a signed numerictype object T with 32-bit word length
and 30-bit fraction length, use the following code:

...
% Define the numerictype object.

8-66

Define Input Properties Programmatically in MATLAB® File

T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.
assert(isequal(numerictype(U),T));
...

Specify fimath of Fixed-Point Input

assert (isequal (fimath (fiparam), F))

Sets the fimath properties of fi input parameter fiparam to the fimath
object F. For example, to specify the fimath property of fixed-point input U so
that it saturates on integer overflow, use the following code:

...
% Define the fimath object.
F = fimath('OverflowAction','Saturate');

% Set the fimath property of input U to F.
assert(isequal(fimath(U),F));
...

Specify Multiple Properties of Input

assert (function1 (params) && function2 (params) && function3 (params) && ...)

Specifies the class, size, and complexity of one or more inputs using a single
assert function call. For example, the following code specifies that input U is
a double, complex, 3-by-3 matrix, and input V is a 16-bit unsigned integer:

...

assert(isa(U,'double') && ~isreal(U) && all(size(U) == [3 3]) && isa(V,'uint16'));

...

Rules for Using assert Function
Follow these rules when using the assert function to specify the properties
of primary function inputs:

8-67

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

• Call assert functions at the beginning of the primary function, before any
flow-control operations such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for,
while, and switch statements.

• If you set the class of an input parameter to fi:

- You must also set its numerictype, see “Specify numerictype of
Fixed-Point Input” on page 8-66.

- You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 8-67.

• If you set the class of an input parameter to struct, you must specify the
class, size, and complexity of each field in the structure in the order in
which you define the fields in the structure definition.

Example: Specifying Properties of Primary
Fixed-Point Inputs
In the following example, the primary MATLAB function emcsqrtfi takes one
fixed-point input: x. The code specifies the following properties for this input:

Property Value

class fi

numerictype numerictype object T, as specified in the
primary function

fimath fimath object F, as specified in the primary
function

size scalar (by default)

complexity real (by default)

function y = emcsqrtfi(x)
T = numerictype('WordLength',32,'FractionLength',23,...

'Signed',true);
F = fimath('SumMode','SpecifyPrecision',...

'SumWordLength',32,'SumFractionLength',23,...
'ProductMode','SpecifyPrecision',...

8-68

Define Input Properties Programmatically in MATLAB® File

'ProductWordLength',32,'ProductFractionLength',23);
assert(isfi(x));
assert(isequal(numerictype(x),T));
assert(isequal(fimath(x),F));

y = sqrt(x);

Example: Specifying Class and Size of Scalar
Structure
Assume you have defined S as the following scalar MATLAB structure:

S = struct('r',double(1),'i',fi(4,true,8,0));

This code specifies the class and size of S and its fields when passed as an
input to your MATLAB function:

function y = fcn(S)

% Specify the class of the input as struct.
assert(isstruct(S));

% Specify the size of the fields r and i
% in the order in which you defined them.
T = numerictype('Wordlength', 8,'FractionLength', ...

0,'signed',true);
assert(isa(S.r,'double'));
assert(isfi(S.i) && isequal(numerictype(S.i),T));

y = S;

Note The only way to name a field in a structure is to set at least one of its
properties. Therefore in the preceding example, an assert function specifies
that field S.r is of type double, even though double is the default.

8-69

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Example: Specifying Class and Size of Structure
Array
For structure arrays, you must choose a representative element of the array
for specifying the properties of each field. For example, assume you have
defined S as the following 1-by-2 array of MATLAB structures:

S = struct('r',{double(1), double(2)},'i',...
{fi(4,1,8,0), fi(5,1,8,0)});

The following code specifies the class and size of each field of structure input S
using the first element of the array:

function y = fcn(S)

% Specify the class of the input S as struct.
assert(isstruct(S));
T = numerictype('Wordlength', 8,'FractionLength', ...

0,'signed',true);

% Specify the size of the fields r and i
% based on the first element of the array.
assert(all(size(S) == [1 2]));
assert(isa(S(1).r,'double'));
assert(isfi(S(1).i) && isequal(numerictype(S(1).i),T));

y = S;

Note The only way to name a field in a structure is to set at least one of its
properties. Therefore in the example above, an assert function specifies that
field S(1).r is of type double, even though double is the default.

8-70

Control Run-Time Checks

Control Run-Time Checks

In this section...

“Types of Run-Time Checks” on page 8-71

“When to Disable Run-Time Checks” on page 8-72

“How to Disable Run-Time Checks” on page 8-72

Types of Run-Time Checks
In simulation, the code generated for your MATLAB functions includes the
following run-time checks and external function calls.

• Memory integrity checks

These checks detect violations of memory integrity in code generated for
MATLAB functions and stop execution with a diagnostic message.

Caution For safety, these checks are enabled by default. Without memory
integrity checks, violations will result in unpredictable behavior.

• Responsiveness checks in code generated for MATLAB functions

These checks enable periodic checks for Ctrl+C breaks in code generated
for MATLAB functions. Enabling responsiveness checks also enables
graphics refreshing.

Caution For safety, these checks are enabled by default. Without these
checks the only way to end a long-running execution might be to terminate
MATLAB.

• Extrinsic calls to MATLAB functions

Extrinsic calls to MATLAB functions, for example to display results,
are enabled by default for debugging purposes. For more information

8-71

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

about extrinsic functions, see “Declaring MATLAB Functions as Extrinsic
Functions” on page 10-12.

When to Disable Run-Time Checks
Generally, generating code with run-time checks enabled results in more
generated code and slower simulation than generating code with the checks
disabled. Similarly, extrinsic calls are time consuming and have an adverse
effect on performance. Disabling run-time checks and extrinsic calls usually
results in streamlined generated code and faster simulation, with these
caveats:

Consider disabling... Only if...

Memory integrity checks You are sure that your code is
safe and that all array bounds and
dimension checking is unnecessary.

Responsiveness checks You are sure that you will not need
to stop execution of your application
using Ctrl+C.

Extrinsic calls You are only using extrinsic calls
to functions that do not affect
application results.

How to Disable Run-Time Checks
To disable run-time checks:

1 Define the compiler options object in the MATLAB workspace by issuing a
constructor command:

comp_cfg = coder.MEXConfig

2 From the command line set the IntegrityChecks, ExtrinsicCalls, or
ResponsivenessChecks properties false, as applicable:

comp_cfg.IntegrityChecks = false;
comp_cfg.ExtrinsicCalls = false;

8-72

Control Run-Time Checks

comp_cfg.ResponsivenessChecks = false;

8-73

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Generation with MATLAB Coder
MATLAB Coder codegen automatically converts MATLAB code directly to C
code. It generates standalone C code that is bit-true to fixed-point MATLAB
code. Using Fixed-Point Toolbox and MATLAB Coder software you can
generate C code with algorithms containing integer math only (i.e., without
any floating-point math).

8-74

Code Generation with MATLAB Function Block

Code Generation with MATLAB Function Block

In this section...

“Composing MATLAB Language Function in Simulink Model” on page 8-75

“MATLAB Function Block with Data Type Override” on page 8-75

“Fixed-Point Data Types with MATLAB Function Block” on page 8-76

Composing MATLAB Language Function in Simulink
Model
The MATLAB Function block lets you compose a MATLAB language function
in a Simulink model that generates embeddable code. When you simulate the
model or generate code for a target environment, a function in a MATLAB
Function block generates efficient C/C++ code. This code meets the strict
memory and data type requirements of embedded target environments. In
this way, the MATLAB Function blocks bring the power of MATLAB for the
embedded environment into Simulink.

For more information about the MATLAB Function block and code generation,
refer to the following:

• MATLAB Function block reference page in the Simulink documentation

• in the Simulink documentation

• “Code Generation Workflow” in theMATLAB Coder documentation

MATLAB Function Block with Data Type Override
When you use the MATLAB Function block in a Simulink model that specifies
data type override, the block determines the data type override equivalents of
the input signal and parameter types. The block then uses these equivalent
values to run the simulation. The following table shows how the MATLAB
Function block determines the data type override equivalent using

• The data type of the input signal or parameter

• The data type override setting in the Simulink model

8-75

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Note The MATLAB Function block does not support the Scaled double
data type override setting.

Input Signal or
Parameter Type

Data Type Override
Setting

Data Type Override
Equivalent

Double fi doubleInherited single

Single fi single

Double Built-in doubleSpecified single

Single Built-in single

Double fi doubleInherited double

Single fi single

Double Built-in doubleSpecified double

Single Built-in single

Double fi doubleInherited Fixed

Single fi single

Double fi doubleSpecified Fixed

Single fi single

For more information about using the MATLAB Function block with data
type override, see the following section of the Simulink documentation:

“Using Data Type Override with the MATLAB Function Block”

Fixed-Point Data Types with MATLAB Function Block
Code generation from MATLAB supports a significant number of Fixed-Point
Toolbox functions. Refer to “Functions Supported for Code Acceleration or
Generation” on page 8-5 for information about which Fixed-Point Toolbox
functions are supported.

For more information on working with fixed-point MATLAB Function blocks,
see:

8-76

Code Generation with MATLAB Function Block

• “Specifying Fixed-Point Parameters in the Model Explorer” on page 8-77

• “Using fimath Objects in MATLAB Function Blocks” on page 8-79

• “Sharing Models with Fixed-Point MATLAB Function Blocks” on page 8-81

Note To simulate models using fixed-point data types in Simulink, you must
have a Simulink Fixed Point license.

Specifying Fixed-Point Parameters in the Model Explorer
You can specify parameters for an MATLAB Function block in a fixed-point
model using the Model Explorer. Try the following exercise:

1 Place a MATLAB Function block in a new model. You can find the block in
the Simulink User-Defined Functions library.

2 Open the Model Explorer by selecting View > Model Explorer from your
model.

3 Expand the untitled* node in the Model Hierarchy pane of the Model
Explorer. Then, select the MATLAB Function node. The Model Explorer
now appears as shown in the following figure.

8-77

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

The following parameters in the Dialog pane apply to MATLAB Function
blocks in models that use fixed-point and integer data types:

Treat these inherited Simulink signal types as fi objects
Choose whether to treat inherited fixed-point and integer signals as
fi objects.

• When you select Fixed-point, the MATLAB Function block treats
all fixed-point inputs as Fixed-Point Toolbox fi objects.

• When you select Fixed-Point & Integer, the MATLAB Function
block treats all fixed-point and integer inputs as Fixed-Point Toolbox
fi objects.

MATLAB Function block fimath
Specify the fimath properties for the block to associate with the
following objects:

• All fixed-point and integer input signals to the MATLAB Function
block that you choose to treat as fi objects.

• All fi and fimath objects constructed in the MATLAB Function block.

8-78

Code Generation with MATLAB Function Block

You can select one of the following options for theMATLAB Function
block fimath:

• Same as MATLAB — When you select this option, the block uses
the same fimath properties as the current default fimath. The edit
box appears dimmed and displays the current default fimath in
read-only form.

• Specify other — When you select this option, you can specify your
own fimath object in the edit box.

For more information on these parameters, see “Using fimath Objects in
MATLAB Function Blocks” on page 8-79.

Using fimath Objects in MATLAB Function Blocks
TheMATLAB Function block fimath parameter enables you to specify one
set of fimath object properties for the MATLAB Function block. The block
associates the fimath properties you specify with the following objects:

• All fixed-point and integer input signals to the MATLAB Function block
that you choose to treat as fi objects.

• All fi and fimath objects constructed in the MATLAB Function block.

You can set these parameters on the following dialog box, which you can
access through either the Model Explorer or the “Ports and Data Manager”.

8-79

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

• To access this pane through the Model Explorer:

- Select View > Model Explorer from your model menu.

- Then, select the MATLAB Function block from the Model Hierarchy
pane on the left side of the Model Explorer.

• To access this pane through the Ports and Data Manager, select Tools >
Edit Data/Ports from the MATLAB Editor menu.

When you select Same as MATLAB for the MATLAB Function block
fimath, the MATLAB Function block uses the current default fimath. The
current default fimath appears dimmed and in read-only form in the edit box.

8-80

Code Generation with MATLAB Function Block

When you select Specify other the block allows you to specify your own
fimath object in the edit box. You can do so in one of two ways:

• Constructing the fimath object inside the edit box.

• Constructing the fimath object in the MATLAB or model workspace and
then entering its variable name in the edit box.

Note If you use this option and plan to share your model with others,
make sure you define the variable in the model workspace. See “Sharing
Models with Fixed-Point MATLAB Function Blocks” on page 8-81 for more
information on sharing models.

The Fixed-Point Toolbox isfimathlocal function supports code generation
for MATLAB.

Sharing Models with Fixed-Point MATLAB Function Blocks
When you collaborate with a coworker, you can share a fixed-point model
using the MATLAB Function block. To share a model, make sure that you
move any variables you define in the MATLAB workspace, including fimath
objects, to the model workspace. For example, try the following:

1 Place a MATLAB Function block in a new model. You can find the block in
the Simulink User-Defined Functions library.

2 Define a fimath object in the MATLAB workspace that you want to use for any
Simulink fixed-point signal entering the MATLAB Function block as an input:

F = fimath('RoundingMethod','Floor','OverflowAction','Wrap',...
'ProductMode','KeepLSB','ProductWordLength',32,...
'SumMode','KeepLSB','SumWordLength',32)

F =
RoundingMethod: Floor
OverflowAction: Wrap

ProductMode: KeepLSB
ProductWordLength: 32

SumMode: KeepLSB

8-81

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

SumWordLength: 32
CastBeforeSum: true

3 Open the Model Explorer by selecting View > Model Explorer from your
model.

4 Expand the untitled* node in the Model Hierarchy pane of the Model
Explorer, and select the MATLAB Function node.

5 Select Specify other for theMATLAB Function block fimath parameter
and enter the variable F into the edit box on the Dialog pane. Click Apply
to save your changes.

You have now defined the fimath properties to be associated with all
Simulink fixed-point input signals and all fi and fimath objects constructed
within the block.

6 Select the Base Workspace node in theModel Hierarchy pane. You can see
the variable F that you have defined in the MATLAB workspace listed in the
Contents pane. If you send this model to a coworker, that coworker must first
define that same variable in the MATLAB workspace to get the same results.

7 Cut the variable F from the base workspace, and paste it into the model
workspace listed under the node for your model, in this case, untitled*. The
Model Explorer now appears as shown in the following figure.

8-82

Code Generation with MATLAB Function Block

You can now email your model to a coworker. Because you included the
required variables in the workspace of the model itself, your coworker can
simply run the model and get the correct results. Receiving and running the
model does not require any extra steps.

8-83

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Generate Fixed-Point FIR Code Using MATLAB Function
Block

In this section...

“Program the MATLAB Function Block” on page 8-84

“Prepare the Inputs” on page 8-85

“Create the Model” on page 8-85

“Define the fimath Object Using the Model Explorer” on page 8-87

“Run the Simulation” on page 8-88

Program the MATLAB Function Block
The following example shows how to create a fixed-point, lowpass, direct form
FIR filter in Simulink. To create the FIR filter, you use Fixed-Point Toolbox
software and the MATLAB Function block. In this example, you perform the
following tasks in the sequence shown:

1 Place a MATLAB Function block in a new model. You can find the block in
the Simulink User-Defined Functions library.

2 Save your model as cgen_fi.mdl.

3 Double-click the MATLAB Function block in your model to open the MATLAB
Function Block Editor. Type or copy and paste the following MATLAB code,
including comments, into the Editor:

function [yout,zf] = dffirdemo(b, x, zi)
%codegen_fi doc model example
%Initialize the output signal yout and the final conditions zf
Ty = numerictype(1,12,8);
yout = fi(zeros(size(x)),'numerictype',Ty);
zf = zi;

% FIR filter code
for k=1:length(x);

% Update the states: z = [x(k);z(1:end-1)]
zf(:) = [x(k);zf(1:end-1)];

8-84

Generate Fixed-Point FIR Code Using MATLAB Function Block

% Form the output: y(k) = b*z
yout(k) = b*zf;

end

% Plot the outputs only in simulation.
% This does not generate C code.
coder.extrinsic('figure');
coder.extrinsic('subplot');
coder.extrinsic('plot');
coder.extrinsic('title');
coder.extrinsic('grid');
figure;
subplot(211);plot(x); title('Noisy Signal');grid;
subplot(212);plot(yout); title('Filtered Signal');grid;

Prepare the Inputs
Define the filter coefficients b, noise x, and initial conditions zi by typing the
following code at the MATLAB command line:

b=fidemo.fi_fir_coefficients;
load mtlb
x = mtlb;
n = length(x);
noise = sin(2*pi*2140*(0:n-1)'./Fs);
x = x + noise;
zi = zeros(length(b),1);

Create the Model

1 Add blocks to your model to create the following system.

8-85

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

8-86

Generate Fixed-Point FIR Code Using MATLAB Function Block

2 Set the block parameters in the model to these “Fixed-Point FFT Code
Example Parameter Values” on page 8-89.

3 From the model menu, select Simulation > Model Configuration
Parameters and set the following parameters.

Parameter Value

Stop time 0

Type Fixed-step

Solver discrete (no continuous
states)

Click Apply to save your changes.

Define the fimath Object Using the Model Explorer

1 Open the Model Explorer for the model.

2 Click the cgen_fi > MATLAB Function node in the Model Hierarchy
pane. The dialog box for the MATLAB Function block appears in the Dialog
pane of the Model Explorer.

3 Select Specify other for theMATLAB Function block fimath parameter
on the MATLAB Function block dialog box. You can then create the following
fimath object in the edit box:

fimath('RoundingMethod','Floor','OverflowAction','Wrap',...
'ProductMode','KeepLSB','ProductWordLength',32,...
'SumMode','KeepLSB','SumWordLength',32)

The fimath object you define here is associated with fixed-point inputs to
the MATLAB Function block as well as the fi object you construct within
the block.

By selecting Specify other for theMATLAB Function block fimath, you
ensure that your model always uses the fimath properties you specified.

8-87

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Run the Simulation

1 Run the simulation by selecting your model and typing Ctrl+T. While the
simulation is running, information outputs to the MATLAB command line.
You can look at the plots of the noisy signal and the filtered signal.

2 Next, build embeddable C code for your model by selecting the model and
typing Ctrl+B. While the code is building, information outputs to the
MATLAB command line. A folder called coder_fi_grt_rtw is created in
your current working folder.

3 Navigate to coder_fi_grt_rtw > coder_fi.c. In this file, you can see the
code generated from your model. Search for the following comment in your
code:

/* coder_fi doc model example */

This search brings you to the beginning of the section of the code that your
MATLAB Function block generated.

8-88

Fixed-Point FFT Code Example Parameter Values

Fixed-Point FFT Code Example Parameter Values

Block Parameter Value

Constant value b

Interpret vector
parameters as 1-D

Unselected

Sampling mode Sample based

Sample time inf

Mode Fixed point

Signedness Signed

Scaling Slope and bias

Word length 12

Slope 2^-12

Constant

Bias 0

Constant value x+noise

Interpret vector
parameters as 1-D

Unselected

Sampling mode Sample based

Sample time 1

Mode Fixed point

Signedness Signed

Scaling Slope and bias

Word length 12

Slope 2^-8

Constant1

Bias 0

8-89

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Block Parameter Value

Constant value zi

Interpret vector
parameters as 1-D

Unselected

Sampling mode Sample based

Sample time inf

Mode Fixed point

Signedness Signed

Scaling Slope and bias

Word length 12

Slope 2^-8

Constant2

Bias 0

Variable name yout

Limit data points to
last

inf

Decimation 1

Sample time -1

Save format Array

To Workspace

Log fixed-point data
as a fi object

Selected

8-90

Fixed-Point FFT Code Example Parameter Values

Block Parameter Value

Variable name zf

Limit data points to
last

inf

Decimation 1

Sample time -1

Save format Array

To Workspace1

Log fixed-point data
as a fi object

Selected

Variable name noisyx

Limit data points to
last

inf

Decimation 1

Sample time -1

Save format Array

To Workspace2

Log fixed-point data
as a fi object

Selected

8-91

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Accelerate Code for Variable-Size Data

In this section...

“Disable Support for Variable-Size Data” on page 8-92

“Control Dynamic Memory Allocation” on page 8-93

“Accelerate Code for MATLAB Functions with Variable-Size Data” on page
8-94

“Accelerate Code for a MATLAB Function That Expands a Vector in a Loop”
on page 8-96

Variable-size data is data whose size might change at run time. MATLAB
supports bounded and unbounded variable-size data for code generation.
Bounded variable-size data has fixed upper bounds. This data can be allocated
statically on the stack or dynamically on the heap. Unbounded variable-size
data does not have fixed upper bounds. This data must be allocated on
the heap. By default, for MEX and C/C++ code generation, support for
variable-size data is enabled and dynamic memory allocation is enabled for
variable-size arrays whose size exceeds a configurable threshold.

Disable Support for Variable-Size Data
By default, for MEX and C/C++ code acceleration, support for variable-size
data is enabled. You modify variable sizing settings at the command line.

1 Create a configuration object for code generation.

cfg = coder.mexconfig;

2 Set the EnableVariableSizing option:

cfg.EnableVariableSizing = false;

3 Using the -config option, pass the configuration object to fiaccel :

fiaccel -config cfg foo

8-92

Accelerate Code for Variable-Size Data

Control Dynamic Memory Allocation
By default, dynamic memory allocation is enabled for variable-size arrays
whose size exceeds a configurable threshold. If you disable support for
variable-size data, you also disable dynamic memory allocation. You can
modify dynamic memory allocation settings at the command line.

1 Create a configuration object for code acceleration. For example, for a MEX
function:

mexcfg = coder.mexconfig;

2 Set the DynamicMemoryAllocation option:

Setting Action

mexcfg.DynamicMemoryAllocation='Off';
Dynamic memory allocation
is disabled. All variable-size
data is allocated statically
on the stack.

mexcfg.DynamicMemoryAllocation='AllVariableSizeArrays';
Dynamic memory
allocation is enabled for
all variable-size arrays.
All variable-size data is
allocated dynamically on the
heap.

mexcfg.DynamicMemoryAllocation='Threshold';
Dynamic memory
allocation is enabled for all
variable-size arrays whose
size (in bytes) is greater than
or equal to the value specified
using the Dynamic memory
allocation threshold
parameter. Variable-size
arrays whose size is less than
this threshold are allocated
on the stack.

8-93

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

3 Optionally, if you set Dynamic memory allocation to `Threshold',
configure Dynamic memory allocation threshold to fine tune memory
allocation.

4 Using the -config option, pass the configuration object to fiaccel:

fiaccel -config mexcfg foo

Accelerate Code for MATLAB Functions with
Variable-Size Data
Here is a basic workflow that generates MEX code.

1 In the MATLAB Editor, add the compilation directive %#codegen at the
top of your function.

This directive:

• Indicates that you intend to generate code for the MATLAB algorithm

• Turns on checking in the MATLAB Code Analyzer to detect potential
errors during code generation

2 Address issues detected by the Code Analyzer.

In some cases, the MATLAB Code Analyzer warns you when your code
assigns data a fixed size but later grows the data, such as by assignment
or concatenation in a loop. If that data is supposed to vary in size at run
time, you can ignore these warnings.

3 Generate a MEX function using fiaccel. Use the following command-line
options:

• -args {coder.typeof...} if you have variable-size inputs

• -report to generate a code generation report

For example:

fiaccel -report foo -args {coder.typeof(0,[2 4],1)}

This command uses coder.typeof to specify one variable-size input for
function foo. The first argument, 0, indicates the input data type (double)

8-94

Accelerate Code for Variable-Size Data

and complexity (real). The second argument, [2 4], indicates the size, a
matrix with two dimensions. The third argument, 1, indicates that the
input is variable sized. The upper bound is 2 for the first dimension and 4
for the second dimension.

Note During compilation, fiaccel detects variables and structure fields
that change size after you define them, and reports these occurrences as
errors. In addition, fiaccel performs a runtime check to generate errors
when data exceeds upper bounds.

4 Fix size mismatch errors:

Cause: How To Fix: For More
Information:

You try to change the
size of data after its
size has been locked.

Declare the data to be
variable sized.

See “Diagnosing and
Fixing Size Mismatch
Errors” on page 21-23.

5 Fix upper bounds errors

Cause: How To Fix: For More
Information:

MATLAB cannot
determine or
compute the upper
bound

Specify an upper
bound.

See “Specifying
Upper Bounds for
Variable-Size Data”
on page 21-6 and
“Diagnosing and Fixing
Size Mismatch Errors”
on page 21-23.

MATLAB attempts
to compute an upper
bound for unbounded
variable-size data.

If the data is
unbounded, enable
dynamic memory
allocation.

See “Control Dynamic
Memory Allocation” on
page 8-93

6 Generate C/C++ code using the fiaccel function.

8-95

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Accelerate Code for a MATLAB Function That Expands
a Vector in a Loop

• “About the MATLAB Function uniquetol” on page 8-96

• “Step 1: Add Compilation Directive for Code Generation” on page 8-96

• “Step 2: Address Issues Detected by the Code Analyzer” on page 8-97

• “Step 3: Generate MEX Code” on page 8-97

• “Step 4: Fix the Size Mismatch Error” on page 8-99

• “Step 5: Compare Execution Speed of MEX Function to Original Code” on
page 8-101

About the MATLAB Function uniquetol
This example uses the function uniquetol. This function returns in vector B a
version of input vector A, where the elements are unique to within tolerance
tol of each other. In vector B, abs(B(i) - B(j)) > tol for all i and j. Initially,
assume input vector A can store up to 100 elements.

function B = uniquetol(A, tol)
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

Step 1: Add Compilation Directive for Code Generation
Add the %#codegen compilation directive at the top of the function:

function B = uniquetol(A, tol) %#codegen
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)

8-96

Accelerate Code for Variable-Size Data

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

Step 2: Address Issues Detected by the Code Analyzer
The Code Analyzer detects that variable B might change size in the for-
loop. It issues this warning:

The variable 'B' appears to change size on every loop iteration.
Consider preallocating for speed.

In this function, vector B should expand in size as it adds values from vector A.
Therefore, you can ignore this warning.

Step 3: Generate MEX Code
To generate MEX code, use the fiaccel function.

1 Generate a MEX function for uniquetol:

T = numerictype(1, 16, 15);
fiaccel -report uniquetol -args {coder.typeof(fi(0,T),[1 100],1),coder.typeof(fi(0,T))}

What do these command-line options mean?

T = numerictype(1, 16, 15) creates a signed numerictype object with a
16-bit word length and 15-bit fraction length that you use to specify the
data type of the input arguments for the function uniquetol.

The fiaccel function -args option specifies the class, complexity, and size
of each input to function uniquetol:

• The first argument, coder.typeof, defines a variable-size input. The
expression coder.typeof(fi(0,T),[1 100],1) defines input A as a
vector of real, signed embedded.fi objects that have a 16-bit word length
and 15-bit fraction length. The vector has a fixed upper bound; its first

8-97

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

dimension is fixed at 1 and its second dimension can vary in size up
to 100 elements.

For more information, see “Specify Variable-Size Inputs at the Command
Line”.

• The second argument, coder.typeof(fi(0,T)), defines input tol as
a real, signed embedded.fi object with a 16-bit word length and 15-bit
fraction length.

The -report option instructs fiaccel to generate a code generation report,
even if no errors or warnings occur.

For more information, see thefiaccel reference page.

Executing this command generates a compiler error:

??? Size mismatch (size [1 x 1] ~= size [1 x 2]).
The size to the left is the size
of the left-hand side of the assignment.

2 Open the error report and select the Variables tab.

8-98

Accelerate Code for Variable-Size Data

The error indicates a size mismatch between the left-hand side and right-hand
side of the assignment statement B = [B A(i)];. The assignment B =
A(1) establishes the size of B as a fixed-size scalar (1 x 1). Therefore, the
concatenation of [B A(i)] creates a 1 x 2 vector.

Step 4: Fix the Size Mismatch Error
To fix this error, declare B to be a variable-size vector.

1 Add this statement to the uniquetol function:

coder.varsize('B');

It should appear before B is used (read). For example:

function B = uniquetol(A, tol) %#codegen
A = sort(A);

coder.varsize('B');

8-99

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

The function coder.varsize declares every instance of B in uniquetol
to be variable sized.

2 Generate code again using the same command:

fiaccel -report uniquetol -args {coder.typeof(fi(0,T),[1 100],1),coder.typeof(fi(0,T))}

In the current folder, fiaccel generates a MEX function for uniquetol
named uniquetol_mex and provides a link to the code generation report.

3 Click the View report link.

4 In the code generation report, select the Variables tab.

8-100

Accelerate Code for Variable-Size Data

The size of variable B is 1x:?, indicating that it is variable size with no
upper bounds.

Step 5: Compare Execution Speed of MEX Function to Original
Code
Run the original MATLAB algorithm and MEX function with the same inputs
for the same number of loop iterations and compare their execution speeds.

1 Create inputs of the correct class, complexity, and size to pass to the
uniquetol MATLAB and MEX functions.

x = fi(rand(1,90), T);
tol = fi(0, T);

2 Run the original uniquetol function in a loop and time how long it takes
to execute 10 iterations of the loop.

tic; for k=1:10, b = uniquetol(x,tol); end; tSim=toc

8-101

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

3 Run the generated MEX function with the same inputs for the same
number of loop iterations.

tic; for k=1:10, b = uniquetol_mex(x,tol); end; tSim_mex=toc

4 Compare the execution times.

r = tSim/tSim_mex

This example shows that generating a MEX function using fiaccel greatly
accelerates the execution of the fixed-point algorithm.

8-102

Propose Fixed-Point Data Types in a MATLAB® Coder™ Project

Propose Fixed-Point Data Types in a MATLAB Coder Project
Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Fixed-Point Toolbox

• C compiler

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

Before generating C code, you must set up the C compiler. See “Setting Up the
C/C++ Compiler”“Set Up Compiler to Generate Compiled C Code Functions”
on page 8-15.

For instructions on installing MathWorks® products, see the MATLAB
installation documentation. If you have installed MATLAB and want to check
which other MathWorks products are installed, in the MATLAB Command
Window, enter ver .

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\coder\fun_with_matlab.

2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB
command line, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the fun_with_matlab.m and fun_with_matlab_test.m files to your
local working folder.

8-103

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Type Name Description

Function code fun_with_matlab.m Entry-point MATLAB
function

Test file fun_with_matlab_test.m MATLAB script that tests
fun_with_matlab.m

The fun_with_matlab Function

function y = fun_with_matlab(x)
persistent z
if isempty(z)

z = zeros(2,1);
end
% [b,a] = butter(2, 0.25)
b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
a = [1, -0.942809041582063, 0.3333333333333333];

y = zeros(size(x));
for i=1:length(x)

y(i) = b(1)*x(i) + z(1);
z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
z(2) = b(3)*x(i) - a(3) * y(i);

end
end

Check Code Generation Readiness

In the current working folder, right-click the fun_with_matlab.m function.
From the context menu, select Check Code Generation Readiness.

The code generation readiness tool screens the code for features and functions
that are not supported for code generation. The tool reports that the
fun_with_matlab.m function is already suitable for code generation.

8-104

Propose Fixed-Point Data Types in a MATLAB® Coder™ Project

If your entry-point function is not suitable for code generation, the tool
provides a report that lists the source files that contain unsupported features
and functions. The report also provides an indication of how much work
you must do to make the MATLAB code ready for code generation. Before
proposing data types, you must fix these issues. For more information, see
“MATLAB Code Analysis”“Detect and Debug Code Generation Errors” on
page 8-25.

Create and set up a MATLAB Coder Project

1 Navigate to the work folder that contains the file for this tutorial.

2 On the MATLAB Apps tab, select MATLAB Coder and then,
in the MATLAB Coder Project dialog box, set Name to
fun_with_matlab_project.prj.

Alternatively, at the MATLAB command line, enter

coder -new fun_with_matlab_project.prj

By default, the project opens in the MATLAB workspace.

8-105

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

3 On the project Overview tab, click the Add files link. Browse to the file
fun_with_matlab.m and then click OK to add the file to the project.

About the fun_with_matlab_test Script

The test script runs the fun_with_matlab function with three input signals:
chirp, step, and impulse. The script then plots the results.

Contents of fun_with_matlab_test

% fun_with_matlab_test
%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second

8-106

Propose Fixed-Point Data Types in a MATLAB® Coder™ Project

f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1)=1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i=1:size(x,1)

y(i,:) = fun_with_matlab(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'};
clf
for i=1:size(x,1)

subplot(size(x,1),1,i);
plot(t,x(i,:),t,y(i,:));
title(titles{i})
legend('Input','Output');

end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.');

Define Input Types

1 On the project Overview tab, click the Autodefine types link.

2 In the Autodefine Entry-Point Input Types dialog box, add
fun_with_matlab_test as a test file and then click Run.

The test file runs and displays the outputs of the filter for each of the input
signals.

8-107

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

MATLAB Coder determines the input types from the test file and then
displays them.

8-108

Propose Fixed-Point Data Types in a MATLAB® Coder™ Project

3 In the Autodefine Entry-Point Input Types dialog box, click Use These
Types.

MATLAB Coder sets the type of x to double(1x256).

Build Instrumented MEX Function

1 In the project, click the Build tab.

2 On the Build tab, set the Output type to Instrumented MEX Function.

3 Click the Build button.

The Build progress dialog box opens. When the build is complete, MATLAB
Coder generates an instrumented MEX function fun_with_matlab_mex
in the current folder. It also provides a link to the report on the Show
Instrumentation Results pane. In this report, you can view the types of
all variables in your MATLAB code.

8-109

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

View Data Type Proposal Settings

1 On the Show Instrumentation Results pane, click the Data type
proposal and report settings link.

This example uses the default data type proposal settings which propose
fraction lengths for the specified word lengths. Because the MATLAB code
is floating-point, the word length is specified by the Default data type of
all floating-point expressions field. You can specify the numerictype
signedness, word length and fraction length. Specifying [] for signedness
instructs MATLAB Coder to choose the appropriate signedness based on
simulation values. The default word length is 16. The default fraction
length is 12.

For more information, see “Modify Data Type Proposal Settings”.

8-110

Propose Fixed-Point Data Types in a MATLAB® Coder™ Project

2 Close the dialog box.

Run Simulation

1 On the Run Simulation pane, verify that the test file is set to
fun_with_matlab_test and that Redirect entry-point calls to MEX
function is selected. That way, each call to fun_with_matlab is replaced
with a call to the instrumented MEX function fun_with_matlab_mex.

2 On the Run Simulation pane, click Run.

The fun_with_matlab_test file runs and calls fun_with_matlab_mex. The
outputs of the filters are displayed as before.

View Code Generation Report

1 On the Show Instrumentation Results pane, click View Report.

2 In the Code Generation Report, click the Variables tab.

The report displays the simulation minimum and maximum values and the
proposed data types.

MATLAB Coder proposes data types with word length of 16 and fraction
length optimized to avoid overflows.

8-111

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Next Steps

To learn how to apply the proposed data types to your entry-point MATLAB
function and verify that the fixed-point version of your algorithm is
functionally equivalent to your original MATLAB algorithm, see “Apply
Fixed-Point Data Types”“Apply Fixed-Point Data Types in a MATLAB®

Coder™ Project” on page 8-113.

8-112

Apply Fixed-Point Data Types in a MATLAB® Coder™ Project

Apply Fixed-Point Data Types in a MATLAB Coder Project
This example shows you how to write a fixed-point version of your entry-point
function using the data types proposed in “Propose Fixed-Point Data
Types”“Propose Fixed-Point Data Types in a MATLAB® Coder™ Project” on
page 8-103.

You will learn how to:

• Use the proposed data types to create a fixed-point version of your
entry-point function.

• Update your test file to call the fixed-point entry-point function.

• Verify that the fixed-point function is functionally equivalent to the original
MATLAB algorithm.

Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Fixed-Point Toolbox

• C compiler

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

Before generating C code, you must set up the C compiler. See “Setting Up the
C/C++ Compiler”“Set Up Compiler to Generate Compiled C Code Functions”
on page 8-15.

For instructions on installing MathWorks products, see the MATLAB
installation documentation. If you have installed MATLAB and want to check
which other MathWorks products are installed, in the MATLAB Command
Window, enter ver.

Create a New Folder and Copy Relevant Files

8-113

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

1 Create a local working folder, for example, c:\coder\fun_with_matlab.

2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB
command line, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the following files to your local working folder.

Type Name Description

Function
code

fun_with_matlab.m Entry-point MATLAB
function

Test file fun_with_matlab_test.m MATLAB script that tests
fun_with_matlab.m

Function
code

fun_with_fi.m Entry-point MATLAB
function — fixed-point
version of fun_with_matlab
that uses data types
proposed in “Propose
Fixed-Point Data
Types”“Propose Fixed-Point
Data Types in a MATLAB®

Coder™ Project” on page
8-103

Test file fun_with_fi_test.m MATLAB script that runs
both fun_with_matlab and
fun_with_fi and compares
the results

The fun_with_fi Function

The fun_with_fi is a fixed-point version of the fun_with_matlab
function that uses the data types proposed in “Propose Fixed-Point Data
Types”“Propose Fixed-Point Data Types in a MATLAB® Coder™ Project” on
page 8-103.

8-114

Apply Fixed-Point Data Types in a MATLAB® Coder™ Project

Variable Proposed
Signedness

Proposed Word
Length

Proposed
Fraction Length

y Signed 16 14

x Signed 16 14

z Signed 16 15

a Unsigned 16 18

b Signed 16 14

i Unsigned 16 0

For example, in fun_with_matlab, variable y is defined as y =
zeros(size(x));. In fun_with_fi, to specify that it is a signed fixed-point
data type with a word length of 16 and a fraction length of 14, y =
fi(zeros(size(x)),1,16,14,'OverflowAction','Wrap','RoundingMethod','Floor')

For more information, see fi.

Create and set up a MATLAB Coder Project

1 Navigate to the work folder that contains the file for this tutorial.

2 On the MATLAB Apps tab, select MATLAB Coder and then,
in the MATLAB Coder Project dialog box, set Name to
fun_with_matlab_project.prj.

Alternatively, at the MATLAB command line, enter

coder -new fun_with_fi_project.prj

Alternatively, at the MATLAB command line, enter

coder -new fun_with_fi_project.prj

By default, the project opens in the MATLAB workspace.

8-115

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

3 On the project Overview tab, click the Add files link. Browse to the file
fun_with_fi.m, and then click OK to add the file to the project.

Define Input Types

1 On the project Overview tab, click the Autodefine types link.

2 In the Autodefine Entry-Point Input Types dialog box, add
fun_with_fi_test as a test file, and then click Run.

The test file runs and plots the outputs of the filter. MATLAB Coder
determines the input types from the test file and then displays them.

3 In the Autodefine Entry-Point Input Types dialog box, click Use These
Types to accept the autodefined input type.

MATLAB Coder sets the type of x to double(1x256).

The fun_with_fi_test Script

8-116

Apply Fixed-Point Data Types in a MATLAB® Coder™ Project

The fun_with_fi_test script runs the original floating-point MATLAB
algorithm, fun_with_matlab, then runs the fixed-point version of the
algorithm, fun_with_fi. The script then plots the outputs for the
floating-point and fixed-point algorithms and the difference in results.

Run Simulation

1 In the project, click the Build tab.

2 On the Verification pane, verify that the test file is set to
fun_with_fi_test. Clear Rebuild MEX function and Redirect
entry-point calls to MEX function so that the test file calls the MATLAB
versions of the original and fixed-point algorithms.

3 On Verification pane, click Run.

The fun_with_fi_test file runs. The test file runs the original MATLAB
algorithm and the fixed-point version, and plots the difference in their
outputs.

8-117

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

4 Optionally, zoom in on each plot in turn to view the error (difference
between the two versions of the algorithm). In this example, the errors are
very small, on the order of 10-3. If the error is unacceptably large, refine
the fixed-point data types.

8-118

Code Generation Readiness Tool

Code Generation Readiness Tool

In this section...

“What Information Does the Code Generation Readiness Tool Provide?” on
page 8-119

“Summary Tab” on page 8-120

“Code Structure Tab” on page 8-121

“See Also” on page 8-124

What Information Does the Code Generation
Readiness Tool Provide?
The code generation readiness tool screens MATLAB code for features and
functions that are not supported for code generation. The tool provides a
report that lists the source files that contain unsupported features and
functions. The report also provides an indication of how much work you
must do to make the MATLAB code suitable for code generation. The tool
might not detect all code generation issues. Under certain circumstances, it
might report false errors. Because the tool might not detect all issues, or
might report false errors, generate a MEX function to verify that your code is
suitable for code generation before generating C code.

8-119

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

Summary Tab

The Summary tab provides a Code Generation Readiness Score which
ranges from 1 to 5. A score of 1 indicates that the tool has detected issues that
require extensive changes to the MATLAB code to make it suitable for code
generation. A score of 5 indicates that the tool has not detected any code
generation issues; the code is ready to use with no or minimal changes.

8-120

Code Generation Readiness Tool

On this tab, the tool also provides information about:

• MATLAB syntax issues. These issues are reported in the MATLAB editor.
Use the code analyzer to learn more about the issues and how to fix them.

• Unsupported MATLAB function calls.

• Unsupported MATLAB language features, such as recursion, cell arrays,
nested functions, and function handles.

• Unsupported data types.

Code Structure Tab

8-121

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

If the code that you are checking calls other MATLAB functions, or you
are checking multiple entry-point functions, the tool displays the Code
Structure Tab.

This tab provides information about the relative size of each file and how
suitable each file is for code generation.

Code Distribution
The Code Distribution pane provides a pie chart that shows the relative
sizes of the files and how suitable each file is for code generation. This
information is useful during the planning phase of a project for estimation
and scheduling purposes. If the report indicates that there are multiple files
not yet suitable for code generation, consider fixing files that require minor
changes before addressing files with significant issues.

Call Tree
The Call Tree pane provides information on the nesting of function calls. For
each called function, the report provides a Code Generation Readiness
score which ranges from 1 to 5. A score of 1 indicates that the tool has detected
issues that require extensive changes to the MATLAB code to make it suitable
for code generation. A score of 5 indicates that the tool has not detected any
code generation issues; the code is ready to use with no or minimal changes.
The report also lists the number of lines of code in each file.

Show MATLAB Functions. If you select Show MATLAB Functions, the
report also lists all the MATLAB functions called by your function code.
For each of these MATLAB functions, if the function is supported for code
generation, the report sets Code Generation Readiness to Yes.

8-122

Code Generation Readiness Tool

8-123

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

See Also

• “Check Code Using the Code Generation Readiness Tool”“Check Code
Using the Code Generation Readiness Tool” on page 8-125“Check Code
Using the Code Generation Readiness Tool”

8-124

Check Code Using the Code Generation Readiness Tool

Check Code Using the Code Generation Readiness Tool

Run Code Generation Readiness Tool at the
Command Line

1 Navigate to the folder that contains the file that you want to check for
code generation readiness.

2 At the MATLAB command prompt, enter:

coder.screener('filename')

The Code Generation Readiness tool opens for the file named filename,
provides a code generation readiness score, and lists issues that must be
fixed prior to code generation.

Run the Code Generation Readiness Tool From the
Current Folder Browser

1 In the current folder browser, right-click the file that you want to check for
code generation readiness.

2 From the context menu, select Check Code Generation Readiness.

The Code Generation Readiness tool opens for the selected file and
provides a code generation readiness score and lists issues that must be
fixed prior to code generation.

See Also

• “Code Generation Readiness Tool” on page 8-119

8-125

8 Code Acceleration and Code Generation from MATLAB® for Fixed-Point Algorithms

8-126

9

Interoperability with Other
Products

• “fi Objects with Simulink” on page 9-2

• “fi Objects with DSP System Toolbox ” on page 9-7

• “Ways to Generate Code” on page 9-12

9 Interoperability with Other Products

fi Objects with Simulink

In this section...

“Reading Fixed-Point Data from the Workspace” on page 9-2

“Writing Fixed-Point Data to the Workspace” on page 9-2

“Setting the Value and Data Type of Block Parameters” on page 9-6

“Logging Fixed-Point Signals” on page 9-6

“Accessing Fixed-Point Block Data During Simulation” on page 9-6

Reading Fixed-Point Data from the Workspace
You can read fixed-point data from the MATLAB workspace into a Simulink
model via the From Workspace block. To do so, the data must be in a
structure format with a fi object in the values field. In array format, the
From Workspace block only accepts real, double-precision data.

To read in fi data, the Interpolate data parameter of the From Workspace
block must not be selected, and the Form output after final data value by
parameter must be set to anything other than Extrapolation.

Writing Fixed-Point Data to the Workspace
You can write fixed-point output from a model to the MATLAB workspace via
the To Workspace block in either array or structure format. Fixed-point data
written by a To Workspace block to the workspace in structure format can be
read back into a Simulink model in structure format by a From Workspace
block.

Note To write fixed-point data to the MATLAB workspace as a fi object,
select the Log fixed-point data as a fi object check box on the To
Workspace block dialog. Otherwise, fixed-point data is converted to double
and written to the workspace as double.

9-2

fi Objects with Simulink®

For example, you can use the following code to create a structure in the
MATLAB workspace with a fi object in the values field. You can then use
the From Workspace block to bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

a =

0 -0.5440
0.8415 0.4121
0.9093 0.9893
0.1411 0.6570

-0.7568 -0.2794
-0.9589 -0.9589
-0.2794 -0.7568
0.6570 0.1411
0.9893 0.9093
0.4121 0.8415

-0.5440 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

s.signals.values = a

s =

signals: [1x1 struct]

s.signals.dimensions = 2

s =

signals: [1x1 struct]

s.time = [0:10]'

9-3

9 Interoperability with Other Products

s =

signals: [1x1 struct]
time: [11x1 double]

The From Workspace block in the following model has the fi structure s in
the Data parameter.

Remember, to write fixed-point data to the MATLAB workspace as a fi
object, select the Log fixed-point data as a fi object check box on the To
Workspace block dialog. Otherwise, fixed-point data is converted to double
and written to the workspace as double.

In the model, the following parameters in the Solver pane of the Model
Configuration Parameters dialog have the indicated settings:

• Start time — 0.0

• Stop time — 10.0

• Type — Fixed-step

• Solver — Discrete (no continuous states)

• Fixed step size (fundamental sample time) — 1.0

9-4

fi Objects with Simulink®

The To Workspace block writes the result of the simulation to the MATLAB
workspace as a fi structure.

simout.signals.values

ans =

0 -8.7041
13.4634 6.5938
14.5488 15.8296
2.2578 10.5117

-12.1089 -4.4707
-15.3428 -15.3428
-4.4707 -12.1089
10.5117 2.2578
15.8296 14.5488

9-5

9 Interoperability with Other Products

6.5938 13.4634
-8.7041 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32

FractionLength: 25

Setting the Value and Data Type of Block Parameters
You can use Fixed-Point Toolbox expressions to specify the value and data
type of block parameters in Simulink. Refer to “Block Support for Data and
Numeric Signal Types” in the Simulink documentation for more information.

Logging Fixed-Point Signals
When fixed-point signals are logged to the MATLAB workspace via signal
logging, they are always logged as fi objects. To enable signal logging for a
signal, select the Log signal data option in the signal’s Signal Properties
dialog box. For more information, refer to “Export Signal Data Using Signal
Logging” in the Simulink documentation.

When you log signals from a referenced model or Stateflow® chart in your
model, the word lengths of fi objects may be larger than you expect. The word
lengths of fixed-point signals in referenced models and Stateflow charts are
logged as the next largest data storage container size.

Accessing Fixed-Point Block Data During Simulation
Simulink provides an application program interface (API) that enables
programmatic access to block data, such as block inputs and outputs,
parameters, states, and work vectors, while a simulation is running. You can
use this interface to develop MATLAB programs capable of accessing block
data while a simulation is running or to access the data from the MATLAB
command line. Fixed-point signal information is returned to you via this API
as fi objects. For more information on the API, refer to “Accessing Block Data
During Simulation” in the Simulink documentation.

9-6

fi Objects with DSP System Toolbox™

fi Objects with DSP System Toolbox

In this section...

“Reading Fixed-Point Signals from the Workspace” on page 9-7

“Writing Fixed-Point Signals to the Workspace” on page 9-7

“fi Objects with dfilt Objects” on page 9-11

Reading Fixed-Point Signals from the Workspace
You can read fixed-point data from the MATLAB workspace into a Simulink
model using the Signal From Workspace and Triggered Signal From
Workspace blocks from DSP System Toolbox™ software. Enter the name
of the defined fi variable in the Signal parameter of the Signal From
Workspace or Triggered Signal From Workspace block.

Writing Fixed-Point Signals to the Workspace
Fixed-point output from a model can be written to the MATLAB workspace
via the Signal To Workspace or Triggered To Workspace block from the
blockset. The fixed-point data is always written as a 2-D or 3-D array.

Note To write fixed-point data to the MATLAB workspace as a fi object,
select the Log fixed-point data as a fi object check box on the Signal To
Workspace or Triggered To Workspace block dialog. Otherwise, fixed-point
data is converted to double and written to the workspace as double.

9-7

9 Interoperability with Other Products

For example, you can use the following code to create a fi object in the
MATLAB workspace. You can then use the Signal From Workspace block to
bring the data into a Simulink model.

a = fi([sin(0:10)' sin(10:-1:0)'])

a =

0 -0.5440
0.8415 0.4121
0.9093 0.9893
0.1411 0.6570

-0.7568 -0.2794
-0.9589 -0.9589
-0.2794 -0.7568
0.6570 0.1411
0.9893 0.9093
0.4121 0.8415

-0.5440 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

The Signal From Workspace block in the following model has these settings:

• Signal — a

• Sample time — 1

• Samples per frame — 2

• Form output after final data value by— Setting to zero

The following parameters in the Solver pane of the Model Configuration
Parameters dialog have these settings:

• Start time — 0.0

9-8

fi Objects with DSP System Toolbox™

• Stop time — 10.0

• Type — Fixed-step

• Solver — Discrete (no continuous states)

• Fixed step size (fundamental sample time) — 1.0

Remember, to write fixed-point data to the MATLAB workspace as a fi object,
select the Log fixed-point data as a fi object check box on the Signal To
Workspace block dialog. Otherwise, fixed-point data is converted to double
and written to the workspace as double.

The Signal To Workspace block writes the result of the simulation to the
MATLAB workspace as a fi object.

9-9

9 Interoperability with Other Products

yout =

(:,:,1) =

0.8415 -0.1319
-0.8415 -0.9561

(:,:,2) =

1.0504 1.6463
0.7682 0.3324

(:,:,3) =

-1.7157 -1.2383
0.2021 0.6795

(:,:,4) =

0.3776 -0.6157
-0.9364 -0.8979

(:,:,5) =

1.4015 1.7508
0.5772 0.0678

(:,:,6) =

-0.5440 0
-0.5440 0

9-10

fi Objects with DSP System Toolbox™

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 17

FractionLength: 15

fi Objects with dfilt Objects
When the Arithmetic property is set to 'fixed', you can use an existing fi
object as the input, states, or coefficients of a dfilt object in DSP System
Toolbox software. Also, fixed-point filters in the toolbox return fi objects as
outputs. Refer to the DSP System Toolbox software documentation for more
information.

9-11

9 Interoperability with Other Products

Ways to Generate Code
There are several ways to use Fixed-Point Toolbox software to generate code:

• The Fixed-Point Toolbox fiaccel function converts your fixed-point
MATLAB code to a MEX function and can greatly accelerate the execution
speed of your fixed-point algorithms.

• The MATLAB Coder codegen function automatically converts MATLAB
code to C/C++ code. Using the MATLAB Coder software allows you to
accelerate your MATLAB code that uses Fixed-Point Toolbox software.
To use the codegen function with Fixed-Point Toolbox software, you also
need to have a MATLAB Coder license. For more information, see “C Code
Generation at the Command Line” in the MATLAB Coder documentation.

• The MATLAB Function block allows you to use MATLAB code in your
Simulink models that generate embeddable C/C++ code. To use the
MATLAB Function block with Fixed-Point Toolbox software, you also need
a Simulink license. For more information on the MATLAB Function block,
see the Simulink documentation.

9-12

10

Calling Functions for Code
Generation

• “Resolution of Function Calls in MATLAB Generated Code” on page 10-2

• “Resolution of Files Types on Code Generation Path” on page 10-6

• “Compilation Directive %#codegen” on page 10-8

• “Call Local Functions” on page 10-9

• “Call Supported Toolbox Functions” on page 10-10

• “Call MATLAB Functions” on page 10-11

10 Calling Functions for Code Generation

Resolution of Function Calls in MATLAB Generated Code
From a MATLAB function, you can call local functions, supported toolbox
functions, and other MATLAB functions. MATLAB resolves function names
for code generation as follows:

10-2

Resolution of Function Calls in MATLAB® Generated Code

0
�*
�$����1

�
�$����
��	�)�	$���
���������

���)1

�
�$����
��

23(435
���)1

6'�����$
*
�$����1

�
�$����
��

23(435
���)1

������7�����$)	��
23(435

*�	�'�$
����
��	
�����

��

��

��

���

0
������
*�	$���

	���������1

���

���

���

��������
�	
���

0���

8������	��

��

��

��

10-3

10 Calling Functions for Code Generation

Key Points About Resolving Function Calls
The diagram illustrates key points about how MATLAB resolves function
calls for code generation:

• Searches two paths, the code generation path and the MATLAB path

See “Compile Path Search Order” on page 10-4.

• Attempts to compile all functions unless the code generation software
determines that it should not compile them or you explicitly declare them
to be extrinsic.

An extrinsic function is a function on the MATLAB path that the compiler
dispatches to MATLAB software for execution because the target language
does not support the function. MATLAB does not generate code for extrinsic
functions. You declare functions to be extrinsic by using the construct
coder.extrinsic, as described in “Declaring MATLAB Functions as
Extrinsic Functions”“Declaring MATLAB Functions as Extrinsic Functions”
on page 10-12“Declaring MATLAB Functions as Extrinsic Functions”.

The code generation software detects calls to many common visualization
functions, such as plot, disp, and figure. For MEX code generation, it
automatically calls out to MATLAB for these functions. For standalone
code generation, it does not generate code for these visualization functions.
This capability removes the requirement to declare these functions
extrinsic using the coder.extrinsic function.

• Resolves file type based on precedence rules described in “Resolution of
Files Types on Code Generation Path” on page 10-6

Compile Path Search Order
During code generation, function calls are resolved on two paths:

1 Code generation path

MATLAB searches this path first during code generation. The code
generation path contains the toolbox functions supported for code
generation.

2 MATLAB path

10-4

Resolution of Function Calls in MATLAB® Generated Code

If the function is not on the code generation path, MATLAB searches this
path.

MATLAB applies the same dispatcher rules when searching each path (see
“Function Precedence Order”).

When to Use the Code Generation Path
Use the code generation path to override a MATLAB function with a
customized version. A file on the code generation path always shadows a file
of the same name on the MATLAB path.

10-5

10 Calling Functions for Code Generation

Resolution of Files Types on Code Generation Path
MATLAB uses the following precedence rules for code generation:

10-6

Resolution of Files Types on Code Generation Path

269/*���1

274/*���1

:/*���1

2/*���	���
269/*���	��	����

���$��#1

���

��

��

��

���

2/*���1

���

���

0���

��

������
������

8������
��

�����

10-7

10 Calling Functions for Code Generation

Compilation Directive %#codegen
Add the %#codegen directive (or pragma) to your function to indicate that you
intend to generate code for the MATLAB algorithm. Adding this directive
instructs the MATLAB code analyzer to help you diagnose and fix violations
that would result in errors during code generation.

10-8

Call Local Functions

Call Local Functions
Local functions are functions defined in the body of MATLAB function. They
work the same way for code generation as they do when executing your
algorithm in the MATLAB environment.

The following example illustrates how to define and call a local function mean:

function [mean, stdev] = stats(vals)
%#codegen

% Calculates a statistical mean and a standard
% deviation for the values in vals.

len = length(vals);
mean = avg(vals, len);
stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);
plot(vals,'-+');

function mean = avg(array,size)
mean = sum(array)/size;

10-9

10 Calling Functions for Code Generation

Call Supported Toolbox Functions
You can call toolbox functions directly if they are supported for code
generation. For a list of supported functions, see “Functions Supported for
Code Generation — Alphabetical List” on page 20-2.

10-10

Call MATLAB® Functions

Call MATLAB Functions
The code generation software attempts to generate code for all functions, even
if they are not supported for C code generation. The software detects calls
to many common visualization functions, such as plot, disp, and figure.
For MEX code generation, it automatically calls out to MATLAB for these
functions. For standalone code generation, it does not generate code for them.

For example, you might want to call plot to visualize your results in the
MATLAB environment. If you generate a MEX function from a function that
calls plot and then run the generated MEX function, the code generation
software dispatches calls to the plot function to MATLAB. If you generate a
library or executable, the generated code does not contain calls to the plot
function. The code generation report highlights calls from your MATLAB
code to extrinsic functions so that it is easy to determine which functions are
supported only in the MATLAB environment.

For unsupported functions other than common visualization functions, you
must declare the functions (like pause) to be extrinsic (see “Resolution
of Function Calls in MATLAB Generated Code” on page 10-2). Extrinsic
functions are not compiled, but instead executed in MATLAB during
simulation (see “How MATLAB Resolves Extrinsic Functions During
Simulation” on page 10-16).

There are two ways to declare a function to be extrinsic:

• Use the coder.extrinsiccoder.extrinsiccoder.extrinsic construct in
main functions or local functions (see “Declaring MATLAB Functions as
Extrinsic Functions” on page 10-12).

10-11

10 Calling Functions for Code Generation

• Call the function indirectly using feval (see “Calling MATLAB Functions
Using feval” on page 10-16).

Declaring MATLAB Functions as Extrinsic Functions
To declare a MATLAB function to be extrinsic, add the
coder.extrinsiccoder.extrinsiccoder.extrinsic construct at
the top of the main function or a local function:

coder.extrinsic('function_name_1', ... , 'function_name_n');

Declaring Extrinsic Functions
The following code declares the MATLAB patch function extrinsic in the
local function create_plot:

function c = pythagoras(a,b,color) %#codegen
% Calculates the hypotenuse of a right triangle
% and displays the triangle.

c = sqrt(a^2 + b^2);
create_plot(a, b, color);

function create_plot(a, b, color)
%Declare patch and axis as extrinsic

coder.extrinsic('patch');

x = [0;a;a];
y = [0;0;b];
patch(x, y, color);
axis('equal');

The code generation software detects that axis is not supported for code
generation and automatically treats it as an extrinsic function. The compiler
does not generate code for patch and axis, but instead dispatches them to
MATLAB for execution.

To test the function, follow these steps:

10-12

Call MATLAB® Functions

1 Convert pythagoras to a MEX function by executing this command at
the MATLAB prompt:

codegen -report pythagoras -args {1, 1, [.3 .3 .3]}

2 Click the link to the code generation report and then, in the report, view
the MATLAB code for create_plot.

The report highlights the patch and axis functions to indicate that they
are supported only within the MATLAB environment.

3 Run the MEX function by executing this command:

pythagoras_mex(3, 4, [1.0 0.0 0.0]);

MATLAB displays a plot of the right triangle as a red patch object:

10-13

10 Calling Functions for Code Generation

When to Use the coder.extrinsic Construct
Use the coder.extrinsic construct to:

• Call MATLAB functions that produce no output — such as pause— during
simulation, without generating unnecessary code (see “How MATLAB
Resolves Extrinsic Functions During Simulation” on page 10-16).

• Make your code self-documenting and easier to debug. You can scan the
source code for coder.extrinsic statements to isolate calls to MATLAB
functions, which can potentially create and propagate mxArrays (see
“Working with mxArrays” on page 10-17).

• Save typing. With one coder.extrinsic statement, each subsequent
function call is extrinsic, as long as the call and the statement are in the
same scope (see “Scope of Extrinsic Function Declarations” on page 10-15).

10-14

Call MATLAB® Functions

• Declare the MATLAB function(s) extrinsic throughout the calling function
scope (see “Scope of Extrinsic Function Declarations” on page 10-15). To
narrow the scope, use feval (see “Calling MATLAB Functions Using feval”
on page 10-16).

Rules for Extrinsic Function Declarations
Observe the following rules when declaring functions extrinsic for code
generation:

• Declare the function extrinsic before you call it.

• Do not use the extrinsic declaration in conditional statements.

Scope of Extrinsic Function Declarations
The coder.extrinsic construct has function scope. For example, consider
the following code:

function y = foo %#codegen
coder.extrinsic('rat','min');
[N D] = rat(pi);
y = 0;
y = min(N, D);

In this example, rat and min as treated as extrinsic every time they are
called in the main function foo. There are two ways to narrow the scope of
an extrinsic declaration inside the main function:

• Declare the MATLAB function extrinsic in a local function, as in this
example:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = mymin(N, D);

function y = mymin(a,b)
coder.extrinsic('min');
y = min(a,b);

10-15

10 Calling Functions for Code Generation

Here, the function rat is extrinsic every time it is called inside the main
function foo, but the function min is extrinsic only when called inside the
local function mymin.

• Call the MATLAB function using feval, as described in “Calling MATLAB
Functions Using feval” on page 10-16.

Calling MATLAB Functions Using feval
The function feval is automatically interpreted as an extrinsic function
during code generation. Therefore, you can use feval to conveniently call
functions that you want to execute in the MATLAB environment, rather than
compiled to generated code.

Consider the following example:

function y = foo
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = feval('min', N, D);

Because feval is extrinsic, the statement feval('min', N, D) is evaluated
by MATLAB — not compiled — which has the same effect as declaring the
function min extrinsic for just this one call. By contrast, the function rat is
extrinsic throughout the function foo.

How MATLAB Resolves Extrinsic Functions During
Simulation
MATLAB resolves calls to extrinsic functions — functions that do not support
code generation — as follows:

10-16

Call MATLAB® Functions

During simulation, MATLAB generates code for the call to an extrinsic
function, but does not generate the function’s internal code. Therefore, you
can run the simulation only on platforms where you install MATLAB software.

During code generation, MATLAB attempts to determine whether the
extrinsic function affects the output of the function in which it is called — for
example by returning mxArrays to an output variable (see “Working with
mxArrays” on page 10-17). Provided that there is no change to the output,
MATLAB proceeds with code generation, but excludes the extrinsic function
from the generated code. Otherwise, MATLAB issues a compiler error.

Working with mxArrays
The output of an extrinsic function is an mxArray — also called a MATLAB
array. The only valid operations for mxArrays are:

• Storing mxArrays in variables

• Passing mxArrays to functions and returning them from functions

• Converting mxArrays to known types at run time

10-17

10 Calling Functions for Code Generation

To use mxArrays returned by extrinsic functions in other operations, you must
first convert them to known types, as described in “Converting mxArrays to
Known Types” on page 10-18.

Converting mxArrays to Known Types
To convert anmxArray to a known type, assign the mxArray to a variable
whose type is defined. At run time, the mxArray is converted to the type of the
variable assigned to it. However, if the data in the mxArray is not consistent
with the type of the variable, you get a run-time error.

For example, consider this code:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = min(N, D);

Here, the top-level function foo calls the extrinsic MATLAB function rat,
which returns two mxArrays representing the numerator N and denominator
D of the rational fraction approximation of pi. Although you can pass these
mxArrays to another MATLAB function — in this case, min — you cannot
assign the mxArray returned by min to the output y.

If you run this function foo in a MATLAB Function block in a Simulink
model, the code generates the following error during simulation:

Function output 'y' cannot be of MATLAB type.

To fix this problem, define y to be the type and size of the value that you
expect min to return — in this case, a scalar double — as follows:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0; % Define y as a scalar of type double
y = min(N,D);

10-18

Call MATLAB® Functions

Restrictions on Extrinsic Functions for Code
Generation
The full MATLAB run-time environment is not supported during code
generation. Therefore, the following restrictions apply when calling MATLAB
functions extrinsically:

• MATLAB functions that inspect the caller or write to the caller’s workspace
do not work during code generation. Such functions include:

- dbstack

- evalin

- assignin

• The MATLAB debugger cannot inspect variables defined in extrinsic
functions.

• Functions in generated code may produce unpredictable results if your
extrinsic function performs any of the following actions at run time:

- Change folders

- Change the MATLAB path

- Delete or add MATLAB files

- Change warning states

- Change MATLAB preferences

- Change Simulink parameters

Limit on Function Arguments
You can call functions with up to 64 inputs and 64 outputs.

10-19

10 Calling Functions for Code Generation

10-20

11

Code Generation for
MATLAB Classes

• “MATLAB Classes Definition for Code Generation” on page 11-2

• “Classes That Support Code Generation” on page 11-9

• “Memory Allocation Requirements” on page 11-10

• “Generate Code for MATLAB Value Classes” on page 11-11

• “Generate Code for MATLAB Handle Classes and System Objects” on
page 11-17

• “MATLAB Classes in Code Generation Reports” on page 11-20

• “Troubleshooting Issues with MATLAB Classes” on page 11-23

11 Code Generation for MATLAB Classes

MATLAB Classes Definition for Code Generation
To generate efficient standalone code for MATLAB classes, you must use
classes differently than you normally would when running your code in the
MATLAB environment.

What’s Different More Information

Class must be in a single file.
Because of this limitation, there is
no code generation support for a
class definition that uses an @-folder.

“Creating a Single, Self-Contained
Class Definition File”

Restricted set of language features. “Language Limitations” on page 11-2

Restricted set of code generation
features.

“Code Generation Features Not
Compatible with Classes” on page
11-4

Definition of class properties. “Defining Class Properties for Code
Generation” on page 11-5

Use of handle classes. “Generate Code for MATLAB Handle
Classes and System Objects” on page
11-17

Calls to base class constructor. “Calls to Base Class Constructor” on
page 11-6

Language Limitations
Although code generation support is provided for common features of classes
such as properties and methods, there are a number of advanced features
which are not supported, such as:

• Events

• Listeners

• Arrays of objects

• Recursive data structures

- Linked lists

11-2

MATLAB® Classes Definition for Code Generation

- Trees

- Graphs

• Overloadable operators subsref, subsassign, and subsindex

In MATLAB, classes can define their own versions of the subsref,
subsassign, and subsindex methods. Code generation does not support
classes that have their own definitions of these methods.

• The empty method

In MATLAB, all classes have a built-in static method, empty, which creates
an empty array of the class. Code generation does not support this method.

• The following MATLAB handle class methods:

- addlistener

- delete

- eq

- findobj

- findprop

- ge

- gt

- isvalid

- le

- lt

- ne

- notify

• Diamond inheritance. If classes B and C both inherit from the same class
and class D inherits from both class B and C, you cannot generate code
for class D.

11-3

11 Code Generation for MATLAB Classes

Code Generation Features Not Compatible with
Classes

• You can generate code for entry-point MATLAB functions that use classes,
but you cannot generate code directly for a MATLAB class.

For example, if ClassNameA is a class definition, you cannot generate code
by executing:

codegen ClassNameA

• If an entry-point MATLAB function has an input or output that is a
MATLAB class, you cannot generate code for this function.

For example, if function foo takes one input, a, that is a MATLAB object,
you cannot generate code for foo by executing:

codegen foo -args {a}

• You cannot generate code for a value class that has a set.prop method.
For example, you cannot generate code for the following Square class
because of the set.side method.

classdef Square < Shape %#codegen
properties

side;
end
methods

function obj = Square(side)
obj = obj@Shape(side^2);
obj.side = side;

end
function set.side(obj,value)

obj.side = value;
obj.area = value^2;

end
end

end

To generate code for this class, modify the class definition to remove the
set.side method.

11-4

MATLAB® Classes Definition for Code Generation

• You cannot use coder.extrinsiccoder.extrinsic to declare a class or
method as extrinsic.

• You cannot pass a MATLAB class to the coder.ceval function.

• If you use classes in code in the MATLAB Function block, you cannot use
the debugger to view class information.

Defining Class Properties for Code Generation
For code generation, you must define class properties differently than you
normally would when running your code in the MATLAB environment:

• If a class has a property of handle type, set the property in the class
constructor. For System objects, you can also use the setupImpl method.

• After defining a property, do not assign it an incompatible type. Do not use
a property before attempting to grow it.

When you define class properties for code generation, consider the same
factors that you take into account when defining variables. In the MATLAB
language, variables can change their class, size, or complexity dynamically
at run time so you can use the same variable to hold a value of any class,
size, or complexity. C and C++ use static typing. Before using variables,
to determine their type, the code generation software requires a complete
assignment to each variable. Similarly, before using any properties, you
must explicitly define the class, size, and complexity of all properties.

• Initial values:

- If the property has no explicit initial value, the code generation software
assumes that it is undefined at the beginning of the constructor. The
code generation software does not assign an empty matrix as the default.

- If the property has no initial value and the code generation software
cannot determine that the property is assigned on all paths prior to first
use, the software generates a compilation error.

- For System objects, if a nontunable property is a structure, you must
completely assign the structure. You cannot do partial assignment
using subscripting.

For example, for a nontunable property, you can use the following
assignment:

11-5

11 Code Generation for MATLAB Classes

mySystemObject.nonTunableProperty=struct('fieldA','a','fieldB','b');

You cannot use the following partial assignments:

mySystemObject.nonTunableProperty.fieldA = a;
mySystemObject.nonTunableProperty.fieldB = b;

- If dynamic memory allocation is enabled, code generation supports
variable-size properties for handle classes. Without dynamic memory
allocation, you cannot generate code for handle classes that have
variable-size properties.

- coder.varsizecoder.varsizecoder.varsize is not supported for any
class properties.

• MATLAB computes class initial values at class loading time before code
generation. If you use persistent variables in MATLAB class property
initialization, the value of the persistent variable computed when the class
loads belongs to MATLAB; it is not the value used at code generation time.
If you use coder.targetcoder.targetcoder.target in MATLAB class
property initialization, coder.target is always ''.

Calls to Base Class Constructor
If a class constructor contains a call to the constructor of the base class, the
call to the base class constructor must be before any for, if, return, switch
or while statements.

For example, if you define a class B based on class A:

classdef B < A
methods

function obj = B(varargin)
if nargin == 0

a = 1;
b = 2;

elseif nargin == 1
a = varargin{1};
b = 1;

elseif nargin == 2
a = varargin{1};
b = varargin{2};

11-6

MATLAB® Classes Definition for Code Generation

end
obj = obj@A(a,b);

end

end
end

Because the class definition for B uses an if statement before calling the base
class constructor for A, you cannot generate code for function callB:

function [y1,y2] = callB
x = B;
y1 = x.p1;
y2 = x.p2;
end

However, you can generate code for callB if you define class B as:

classdef B < A
methods

function obj = NewB(varargin)
[a,b] = getaandb(varargin{:});
obj = obj@A(a,b);

end

end
end

function [a,b] = getaandb(varargin)
if nargin == 0

a = 1;
b = 2;

elseif nargin == 1
a = varargin{1};
b = 1;

elseif nargin == 2
a = varargin{1};
b = varargin{2};

end
end

11-7

11 Code Generation for MATLAB Classes

11-8

Classes That Support Code Generation

Classes That Support Code Generation
You can generate code for MATLAB value and handle classes and user-defined
System objects. Your class can have multiple methods and properties and can
inherit from multiple classes.

To generate code for: Example:

Value classes “Generate Code for MATLAB Value
Classes” on page 11-11

Handle classes including
user-defined System objects

“Generate Code for MATLAB Handle
Classes and System Objects” on page
11-17

For more information, see:

• “Classes in the MATLAB Language”

• “MATLAB Classes Definition for Code Generation” on page 11-2

11-9

11 Code Generation for MATLAB Classes

Memory Allocation Requirements
When you create a handle object, you must assign the object to a persistent
variable or to a property of another MATLAB object that must also be a
persistent variable. The assignment must be in an if-isempty clause. After
assignment, you can copy the object to a local variable, pass it to or return
it from another function. For more information, see “Generate Code for
MATLAB Handle Classes and System Objects” on page 11-17.

11-10

Generate Code for MATLAB® Value Classes

Generate Code for MATLAB Value Classes
This example shows how to generate code for a MATLAB value class and then
view the generated code in the code generation report.

1 In a writable folder, create a MATLAB value class, Shape. Save the code
as Shape.m.

classdef Shape
% SHAPE Create a shape at coordinates
% centerX and centerY

properties
centerX;
centerY;

end
properties (Dependent = true)

area;
end
methods

function out = get.area(obj)
out = obj.getarea();

end
function obj = Shape(centerX,centerY)

obj.centerX = centerX;
obj.centerY = centerY;

end
end
methods(Abstract = true)

getarea(obj);
end
methods(Static)

function d = distanceBetweenShapes(shape1,shape2)
xDist = abs(shape1.centerX - shape2.centerX);
yDist = abs(shape1.centerY - shape2.centerY);
d = sqrt(xDist^2 + yDist^2);

end
end

end

11-11

11 Code Generation for MATLAB Classes

2 In the same folder, create a class, Square, that is a subclass of Shape. Save
the code as Square.m.

classdef Square < Shape
% Create a Square at coordinates center X and center Y
% with sides of length of side

properties
side;

end
methods

function obj = Square(side,centerX,centerY)
obj@Shape(centerX,centerY);
obj.side = side;

end
function Area = getarea(obj)

Area = obj.side^2;
end

end
end

3 In the same folder, create a class, Rhombus, that is a subclass of Shape.
Save the code as Rhombus.m.

classdef Rhombus < Shape
properties

diag1;
diag2;

end
methods

function obj = Rhombus(diag1,diag2,centerX,centerY)
obj@Shape(centerX,centerY);
obj.diag1 = diag1;
obj.diag2 = diag2;

end
function Area = getarea(obj)

Area = 0.5*obj.diag1*obj.diag2;
end

end
end

4 Write a function that uses this class.

11-12

Generate Code for MATLAB® Value Classes

function [TotalArea, Distance] = use_shape
%#codegen
s = Square(2,1,2);
r = Rhombus(3,4,7,10);
TotalArea = s.area + r.area;
Distance = Shape.distanceBetweenShapes(s,r);

5 Generate a static library for use_shape and generate a code generation
report.

codegen -config:lib -report use_shape

codegen generates a C static library with the default name, use_shape,
and supporting files in the default folder, codegen/lib/use_shape.

6 Click the View report link.

7 In the report, on theMATLAB code tab, click the link to the Rhombus class.

The report displays the class definition of the Rhombus class and highlights
the class constructor. On the Variables tab, it provides details of all the
variables used in the class. If a variable is a MATLAB object, by default,
the report displays the object without displaying its properties, as shown
for obj>1. To view the complete list of properties, expand the list as shown
for obj>2.

11-13

11 Code Generation for MATLAB Classes

8 At the top right side of the report, expand the Calls list.

The Calls list shows that there is a call to the Rhombus constructor from
use_shape and that this constructor calls the Shape constructor.

11-14

Generate Code for MATLAB® Value Classes

9 The constructor for the Rhombus class calls the Shape method of the base
Shape class: obj@Shape. In the report, click the Shape link in this call.

11-15

11 Code Generation for MATLAB Classes

The link takes you to the Shape method in the Shape class definition.

11-16

Generate Code for MATLAB® Handle Classes and System Objects

Generate Code for MATLAB Handle Classes and System
Objects

This example shows how to generate code for a user-defined System object
and then view the generated code in the code generation report. When you
create a System or handle object, you must assign the object to a persistent
variable or to a property of another MATLAB object that must also be a
persistent variable. The assignment must be in an if-isempty clause. After
assignment, you can copy the object to a local variable, pass it to or return it
from another function.

1 In a writable folder, create a System object, AddOne, which subclasses from
matlab.System. Save the code as AddOne.m.

classdef AddOne < matlab.System
% ADDONE Compute an output value that increments the input by one

methods (Access=protected)
% stepImpl method is called by the step method
function y = stepImpl(~,x)

y = x+1;
end

end
end

2 Write a function that uses this System object.

function y = testAddOne(x)
%#codegen

persistent p;
if isempty(p)

p = AddOne();
end
y = p.step(x);

end

For code generation, you must immediately assign a System object to a
persistent variable in an if isempty clause as in this example.

3 Generate a MEX function for this code.

11-17

11 Code Generation for MATLAB Classes

codegen -report testAddOne -args {0}

The -report option instructs codegen to generate a code generation report,
even if no errors or warnings occur. The -args option specifies that the
testAddOne function takes one scalar double input.

>> codegen -report testAddOne -args {0}
Code generation successful: View report

4 Click the View report link.

5 In the report, on the MATLAB Code tab Functions panel, click
testAddOne, then click the Variables tab. You can view information about
the variable p on this tab.

6 To view the class definition, on the Classes panel, click AddOne.

11-18

Generate Code for MATLAB® Handle Classes and System Objects

11-19

11 Code Generation for MATLAB Classes

MATLAB Classes in Code Generation Reports

What Reports Tell You About Classes
Code generation reports:

• Provide a hierarchical tree of the classes used in your MATLAB code.

• Display a list of methods for each class in the MATLAB code tab.

• Display the objects used in your MATLAB code together with their
properties on the Variables tab.

• Provide a filter so that you can sort methods by class, size, and complexity.

• List the set of calls from and to the selected method in the Calls list.

How Classes Appear in Code Generation Reports

In the MATLAB Code Tab
The report displays an alphabetical hierarchical list of the classes used in the
your MATLAB code. For each class, you can:

• Expand the class information to view the class methods.

• View a class method by clicking its name. The report displays the methods
in the context of the full class definition.

• Filter the methods by size, complexity, and class by using the Filter
functions and methods option.

Default Constructors. If a class has a default constructor, the report
displays the constructor in italics.

Specializations. If the same class is specialized into multiple different
classes, the report differentiates the specializations by grouping each one
under a single node in the tree. The report associates the class definition
functions and static methods with the primary node. It associates the
instance-specific methods with the corresponding specialized node.

For example, consider a base class, Shape that has two specialized subclasses,
Rhombus and Square. The Shape class has an abstract method, getarea,

11-20

MATLAB® Classes in Code Generation Reports

and a static method, distanceBetweenShapes. The code generation report,
displays a node for the specialized Rhombus and Square classes with their
constructors and getarea method. It displays a node for the Shape class and
its associated static method, distanceBetweenShapes, and two instances of
the Shape class, Shape1 and Shape2.

Packages. If you define classes as part of a package, the report displays
the package in the list of classes. You can expand the package to view the
classes that it contains. For more information about packages, see “Packages
Create Namespaces”.

In the Variables Tab
The report displays all the objects in the selected function or class. By default,
for classes that have properties, the list of properties is collapsed. Click the
+ symbol next to the object name to open the list.

The report displays the properties using just the base property name, not the
fully qualified name. For example, if your code uses variable obj1 that is a

11-21

11 Code Generation for MATLAB Classes

MATLAB object with property prop1, then the report displays the property as
prop1 not obj1.prop1. When you sort the Variables column, the sort order
is based on the fully qualified property name.

In the Call Stack
The call stack lists the functions and methods in the order that the top-level
function calls them. It also lists the local functions that each function calls.

How to Generate a Code Generation Report
Add the -report option to your codegen command (requires a MATLAB
Coder license)

11-22

Troubleshooting Issues with MATLAB® Classes

Troubleshooting Issues with MATLAB Classes

Class class does not have a property with name name
If a MATLAB class has a method, mymethod, that returns a handle class
with a property, myprop, you cannot generate code for the following type of
assignment:

obj.mymethod().myprop=...

For example, consider the following classes:

classdef MyClass < handle
properties

myprop
end
methods

function this = MyClass
this.myprop = MyClass2;

end
function y = mymethod(this)

y = this.myprop;
end

end
end

classdef MyClass2 < handle
properties

aa
end

end

You cannot generate code for function foo.

function foo

persistent h
if isempty(h)

h = MyClass;
end

11-23

11 Code Generation for MATLAB Classes

h.mymethod().aa = 12;

In this function, h.mymethod() returns a handle object of type MyClass2. In
MATLAB, the assignment h.mymethod().aa = 12; changes the property of
that object. Code generation does not support this assignment.

Workaround
Rewrite the code to return the object and then assign a value to a property
of the object.

function foo

persistent h
if isempty(h)

h = MyClass;
end

b=h.mymethod();
b.aa=12;

11-24

12

Defining Data for Code
Generation

• “Data Definition for Code Generation” on page 12-2

• “Code Generation for Complex Data” on page 12-4

• “Code Generation for Characters” on page 12-6

12 Defining Data for Code Generation

Data Definition for Code Generation
To generate efficient standalone code, you must define the following types
and classes of data differently than you normally would when running your
code in the MATLAB environment:

Data What’s Different More Information

Complex numbers • Complexity of
variables must be set
at time of assignment
and before first use

• Expressions
containing a complex
number or variable
always evaluate to a
complex result, even
if the result is zero

Note Because
MATLAB does not
support complex
integer arithmetic,
you cannot generate
code for functions that
use complex integer
arithmetic

“Code Generation for
Complex Data” on page
12-4

Characters Restricted to 8 bits of
precision

“Code Generation for
Characters” on page
12-6

12-2

Data Definition for Code Generation

Data What’s Different More Information

Enumerated data • Supports
integer-based
enumerated types
only

• Restricted use in
switch statements
and for-loops

“Enumerated
Data”“Enumerated
Data”“Enumerated
Data”

Function handles • Function handles
must be scalar values

• Same bound variable
cannot reference
different function
handles

• Cannot pass function
handles to or from
primary or extrinsic
functions

• Cannot view function
handles from the
debugger

“Function
Handles”“Function
Handles”“Function
Handles”

12-3

12 Defining Data for Code Generation

Code Generation for Complex Data

In this section...

“Restrictions When Defining Complex Variables” on page 12-4

“Expressions Containing Complex Operands Yield Complex Results” on
page 12-5

Restrictions When Defining Complex Variables
For code generation, you must set the complexity of variables at the time of
assignment, either by assigning a complex constant or using the complex
function, as in these examples:

x = 5 + 6i; % x is a complex number by assignment.
y = 7 + 8j; % y is a complex number by assignment.
x = complex(5,6); % x is the complex number 5 + 6i.

Once you set the type and size of a variable, you cannot cast it to another
type or size. In the following example, the variable x is defined as complex
and stays complex:

x = 1 + 2i; % Defines x as a complex variable.
y = int16(x); % Real and imaginary parts of y are int16.
x = 3; % x now has the value 3 + 0i.

Mismatches can also occur when you assign a real operand the complex result
of an operation:

z = 3; % Sets type of z to double (real)
z = 3 + 2i; % ERROR: cannot recast z to complex

As a workaround, set the complexity of the operand to match the result
of the operation:

m = complex(3); % Sets m to complex variable of value 3 + 0i
m = 5 + 6.7i; % Assigns a complex result to a complex number

12-4

Code Generation for Complex Data

Expressions Containing Complex Operands Yield
Complex Results
In general, expressions that contain one or more complex operands always
produce a complex result in generated code, even if the value of the result is
zero. Consider the following example:

x = 2 + 3i;
y = 2 - 3i;
z = x + y; % z is 4 + 0i.

In MATLAB, this code generates the real result z = 4. However, during
code generation, the types for x and y are known, but their values are not.
Because either or both operands in this expression are complex, z is defined
as a complex variable requiring storage for both a real and an imaginary
part. This means that z equals the complex result 4 + 0i in generated code,
not 4 as in MATLAB code.

There are two exceptions to this behavior:

• Functions that take complex arguments, but produce real results

y = real(x); % y is the real part of the complex number x.
y = imag(x); % y is the real-valued imaginary part of x.
y = isreal(x); % y is false (0) for a complex number x.

• Functions that take real arguments, but produce complex results:

z = complex(x,y); % z is a complex number for a real x and y.

12-5

12 Defining Data for Code Generation

Code Generation for Characters
The complete set of Unicode® characters is not supported for code generation.
Characters are restricted to 8 bits of precision in generated code. Because
many mathematical operations require more than 8 bits of precision, it is
recommended that you do not perform arithmetic with characters if you
intend to generate code from your MATLAB algorithm.

12-6

13

Defining Functions for Code
Generation

• “Specify Variable Numbers of Arguments” on page 13-2

• “Supported Index Expressions” on page 13-3

• “Apply Operations to a Variable Number of Arguments” on page 13-4

• “Implement Wrapper Functions” on page 13-7

• “Pass Property/Value Pairs” on page 13-8

• “Variable Length Argument Lists for Code Generation” on page 13-10

13 Defining Functions for Code Generation

Specify Variable Numbers of Arguments
You can use varargin and varargout for passing and returning variable
numbers of parameters to MATLAB functions called from a top-level function.

Common applications of varargin and varargout for code generation are to:

• “Apply Operations to a Variable Number of Arguments” on page 13-4

• “Implement Wrapper Functions” on page 13-7

• “Pass Property/Value Pairs” on page 13-8

Code generation relies on loop unrolling to produce simple and efficient code
for varargin and varargout. This technique permits most common uses of
varargin and varargout, but not all (see “Variable Length Argument Lists
for Code Generation” on page 13-10). This following sections explain how to
code effectively using these constructs.

For more information about using varargin and varargout in MATLAB
functions, see Passing Variable Numbers of Arguments.

13-2

Supported Index Expressions

Supported Index Expressions
In MATLAB, varargin and varargout are cell arrays. Generated code does
not support cell arrays, but does allow you to use the most common syntax
— curly braces {} — for indexing into varargin and varargout arrays, as
in this example:

%#codegen
function [x,y,z] = fcn(a,b,c)
[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i};
end

You can use the following index expressions. The exp arguments must be
constant expressions or depend on a loop index variable.

Expression Description

varargin{exp} Read the value of element
exp

varargin{exp1: exp2} Read the values of elements
exp1 through exp2

varargin
(read only)

varargin{:} Read the values of all
elements

varargout
(read and write)

varargout{exp} Read or write the value of
element exp

Note The use of () is not supported for indexing into varargin and
varargout arrays.

13-3

13 Defining Functions for Code Generation

Apply Operations to a Variable Number of Arguments
You can use varargin and varargout in for-loops to apply operations to
a variable number of arguments. To index into varargin and varargout
arrays in generated code, the value of the loop index variable must be known
at compile time. Therefore, during code generation, the compiler attempts
to automatically unroll these for-loops. Unrolling eliminates the loop logic
by creating a separate copy of the loop body in the generated code for each
iteration. Within each iteration, the loop index variable becomes a constant.
For example, the following function automatically unrolls its for-loop in the
generated code:

%#codegen
function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

When to Force Loop Unrolling
To automatically unroll for-loops containing varargin and varargout
expressions, the relationship between the loop index expression and the index
variable must be determined at compile time.

In the following example, the function fcn cannot detect a logical relationship
between the index expression j and the index variable i:

%#codegen
function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;
for i = 1:length(varargin)

j = j+1;
varargout{j} = varargin{j};

13-4

Apply Operations to a Variable Number of Arguments

end

As a result, the function does not unroll the loop and generates a compilation
error:

Nonconstant expression or empty matrix.
This expression must be constant because
its value determines the size or class of some expression.

To fix the problem, you can force loop unrolling by wrapping the loop header
in the function coder.unrollcoder.unrollcoder.unroll, as follows:

%#codegen
function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;
for i = coder.unroll(1:length(varargin))

j = j + 1;
varargout{j} = varargin{j};

end;

Using Variable Numbers of Arguments in a for-Loop
The following example multiplies a variable number of input dimensions in
inches by 2.54 to convert them to centimeters:

%#codegen
function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

13-5

13 Defining Functions for Code Generation

Key Points About the Example

• varargin and varargout appear in the local function inch_2_cm, not in
the top-level function conv_2_metric.

• The index into varargin and varargout is a for-loop variable

For more information, see “Variable Length Argument Lists for Code
Generation” on page 13-10.

13-6

Implement Wrapper Functions

Implement Wrapper Functions
You can use varargin and varargout to write wrapper functions that accept
any number of inputs and pass them directly to another function.

Passing Variable Numbers of Arguments from One
Function to Another
The following example passes a variable number of inputs to different
optimization functions, based on a specified input method:

%#codegen
function answer = fcn(method,a,b,c)
answer = optimize(method,a,b,c);

function answer = optimize(method,varargin)
if strcmp(method,'simple')

answer = simple_optimization(varargin{:});
else

answer = complex_optimization(varargin{:});
end

...

Key Points About the Example

• You can use {:} to read all elements of varargin and pass them to another
function.

• You can mix variable and fixed numbers of arguments.

For more information, see “Variable Length Argument Lists for Code
Generation” on page 13-10.

13-7

13 Defining Functions for Code Generation

Pass Property/Value Pairs
You can use varargin to pass property/value pairs in functions. However,
for code generation, you must take precautions to avoid type mismatch errors
when evaluating varargin array elements in a for-loop:

If Do This:

You assign varargin array elements
to local variables in the for-loop

Verify that for all pairs, the size,
type, and complexity are the same
for each property and the same for
each value

Properties or values have different
sizes, types, or complexity

Do not assign varargin array
elements to local variables in a
for-loop; reference the elements
directly

For example, in the following function test1, the sizes of the property strings
and numeric values are not the same in each pair:

%#codegen
function test1

v = create_value('size', 18, 'rgb', [240 9 44]);
end

function v = create_value(varargin)
v = new_value();
for i = 1 : 2 : length(varargin)

name = varargin{i};
value = varargin{i+1};
switch name

case 'size'
v = set_size(v, value);

case 'rgb'
v = set_color(v, value);

otherwise
end

end
end

13-8

Pass Property/Value Pairs

...

Generated code determines the size, type, and complexity of a local variable
based on its first assignment. In this example, the first assignments occur
in the first iteration of the for-loop:

• Defines local variable name with size equal to 4

• Defines local variable value with a size of scalar

However, in the second iteration, the size of the property string changes to
3 and the size of the numeric value changes to a vector, resulting in a type
mismatch error. To avoid such errors, reference varargin array values
directly, not through local variables, as highlighted in this code:

%#codegen
function test1

v = create_value('size', 18, 'rgb', [240 9 44]);
end

function v = create_value(varargin)
v = new_value();
for i = 1 : 2 : length(varargin)

switch varargin{i}
case 'size'

v = set_size(v, varargin{i+1});
case 'rgb'

v = set_color(v, varargin{i+1});
otherwise

end
end

end
...

13-9

13 Defining Functions for Code Generation

Variable Length Argument Lists for Code Generation
Do not use varargin or varargout in top-level functions

You cannot use varargin or varargout as arguments to top-level functions.
A top-level function is:

• The function called by Simulink in a MATLAB Function block or by
Stateflow in a MATLAB function.

• The function that you provide on the command line to codegen

For example, the following code generates compilation errors:

%#codegen
function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

To fix the problem, write a top-level function that specifies a fixed number of
inputs and outputs and then call inch_2_cm as an external function or local
function, as in this example:

%#codegen
function [cmL, cmW, cmH] = conv_2_metric(inL, inW, inH)
[cmL, cmW, cmH] = inch_2_cm(inL, inW, inH);

function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

Use curly braces {} to index into the argument list

For code generation, you can use curly braces {}, but not parentheses (),
to index into varargin and varargout arrays. For more information, see
“Supported Index Expressions” on page 13-3.

13-10

Variable Length Argument Lists for Code Generation

Verify that indices can be computed at compile time

If you use an expression to index into varargin or varargout, make sure that
the value of the expression can be computed at compile time. For examples,
see “Apply Operations to a Variable Number of Arguments” on page 13-4.

Do not write to varargin

Generated code treats varargin as a read-only variable. If you want to write
to any of the input arguments, copy the values into a local variable.

13-11

13 Defining Functions for Code Generation

13-12

14

Defining MATLAB
Variables for C/C++ Code
Generation

• “Variables Definition for Code Generation” on page 14-2

• “Best Practices for Defining Variables for C/C++ Code Generation” on page
14-3

• “Eliminate Redundant Copies of Variables in Generated Code” on page 14-7

• “Reassignment of Variable Properties” on page 14-9

• “Define and Initialize Persistent Variables” on page 14-10

• “Reuse the Same Variable with Different Properties” on page 14-11

• “Avoid Overflows in for-Loops” on page 14-16

• “Supported Variable Types” on page 14-18

14 Defining MATLAB® Variables for C/C++ Code Generation

Variables Definition for Code Generation
In the MATLAB language, variables can change their properties dynamically
at run time so you can use the same variable to hold a value of any class, size,
or complexity. For example, the following code works in MATLAB:

function x = foo(c) %#codegen
if(c>0)

x = 0;
else

x = [1 2 3];
end
disp(x);
end

However, statically-typed languages like C must be able to determine variable
properties at compile time. Therefore, for C/C++ code generation, you must
explicitly define the class, size, and complexity of variables in MATLAB
source code before using them. For example, rewrite the above source code
with a definition for x:

function x = foo(c) %#codegen
x = zeros(1,3);
if(c>0)

x = 0;
else

x = [1 2 3];
end
disp(x);
end

For more information, see “Best Practices for Defining Variables for C/C++
Code Generation” on page 14-3.

14-2

Best Practices for Defining Variables for C/C++ Code Generation

Best Practices for Defining Variables for C/C++ Code
Generation

In this section...

“Define Variables By Assignment Before Using Them” on page 14-3

“Use Caution When Reassigning Variables” on page 14-6

“Use Type Cast Operators in Variable Definitions” on page 14-6

“Define Matrices Before Assigning Indexed Variables” on page 14-6

Define Variables By Assignment Before Using Them
For C/C++ code generation, you should explicitly and unambiguously define
the class, size, and complexity of variables before using them in operations or
returning them as outputs. Define variables by assignment, but note that the
assignment copies not only the value, but also the size, class, and complexity
represented by that value to the new variable. For example:

Assignment: Defines:

a = 14.7; a as a real double scalar.

b = a; b with properties of a (real double
scalar).

c = zeros(5,2); c as a real 5-by-2 array of doubles.

d = [1 2 3 4 5; 6 7 8 9 0]; d as a real 5-by-2 array of doubles.

y = int16(3); y as a real 16-bit integer scalar.

Define properties this way so that the variable is defined on all execution
paths during C/C++ code generation (see Defining a Variable for Multiple
Execution Paths on page 14-4).

The data that you assign to a variable can be a scalar, matrix, or structure. If
your variable is a structure, define the properties of each field explicitly (see
Defining All Fields in a Structure on page 14-5).

14-3

14 Defining MATLAB® Variables for C/C++ Code Generation

Initializing the new variable to the value of the assigned data sometimes
results in redundant copies in the generated code. To avoid redundant
copies, you can define variables without initializing their values by using the
coder.nullcopy construct as described in “Eliminate Redundant Copies of
Variables in Generated Code” on page 14-7.

When you define variables, they are local by default; they do not persist
between function calls. To make variables persistent, see “Define and
Initialize Persistent Variables” on page 14-10.

Defining a Variable for Multiple Execution Paths

Consider the following MATLAB code:

...
if c > 0

x = 11;
end
% Later in your code ...
if c > 0

use(x);
end
...

Here, x is assigned only if c > 0 and used only when c > 0. This code
works in MATLAB, but generates a compilation error during code generation
because it detects that x is undefined on some execution paths (when c <= 0),.

To make this code suitable for code generation, define x before using it:

x = 0;
...
if c > 0

x = 11;
end
% Later in your code ...
if c > 0

use(x);
end
...

14-4

Best Practices for Defining Variables for C/C++ Code Generation

Defining All Fields in a Structure

Consider the following MATLAB code:

...
if c > 0

s.a = 11;
disp(s);

else
s.a = 12;
s.b = 12;

end
% Try to use s
use(s);
...

Here, the first part of the if statement uses only the field a, and the else
clause uses fields a and b. This code works in MATLAB, but generates a
compilation error during C/C++ code generation because it detects a structure
type mismatch. To prevent this error, do not add fields to a structure after
you perform certain operations on the structure. For more information, see
“Structure Definition for Code Generation”“Structure Definition for Code
Generation” on page 19-2“Structure Definition for Code Generation”.

To make this code suitable for C/C++ code generation, define all fields of
s before using it.

...
% Define all fields in structure s
s = struct(a ,0, b , 0);
if c > 0

s.a = 11;
disp(s);

else
s.a = 12;
s.b = 12;

end
% Use s
use(s);
...

14-5

14 Defining MATLAB® Variables for C/C++ Code Generation

Use Caution When Reassigning Variables
In general, you should adhere to the "one variable/one type" rule for C/C++
code generation; that is, each variable must have a specific class, size and
complexity. Generally, if you reassign variable properties after the initial
assignment, you get a compilation error during code generation, but there
are exceptions, as described in “Reassignment of Variable Properties” on
page 14-9.

Use Type Cast Operators in Variable Definitions
By default, constants are of type double. To define variables of other types,
you can use type cast operators in variable definitions. For example, the
following code defines variable y as an integer:

...
x = 15; % x is of type double by default.
y = uint8(x); % z has the value of x, but cast to uint8.
...

Define Matrices Before Assigning Indexed Variables
When generating C/C++ code from MATLAB, you cannot grow a variable by
writing into an element beyond its current size. Such indexing operations
produce run-time errors. You must define the matrix first before assigning
values to any of its elements.

For example, the following initial assignment is not allowed for code
generation:

g(3,2) = 14.6; % Not allowed for creating g
% OK for assigning value once created

For more information about indexing matrices, see “Incompatibility with
MATLAB in Matrix Indexing Operations for Code Generation” on page 21-32.

14-6

Eliminate Redundant Copies of Variables in Generated Code

Eliminate Redundant Copies of Variables in Generated
Code

In this section...

“When Redundant Copies Occur” on page 14-7

“How to Eliminate Redundant Copies by Defining Uninitialized Variables”
on page 14-7

“Defining Uninitialized Variables” on page 14-8

When Redundant Copies Occur
During C/C++ code generation, MATLAB checks for statements that attempt
to access uninitialized memory. If it detects execution paths where a variable
is used but is potentially not defined, it generates a compile-time error. To
prevent these errors, define all variables by assignment before using them in
operations or returning them as function outputs.

Note, however, that variable assignments not only copy the properties of the
assigned data to the new variable, but also initialize the new variable to the
assigned value. This forced initialization sometimes results in redundant
copies in C/C++ code. To eliminate redundant copies, define uninitialized
variables by using the coder.nullcopycoder.nullcopycoder.nullcopy
function, as described in “How to Eliminate Redundant Copies by Defining
Uninitialized Variables” on page 14-7.

How to Eliminate Redundant Copies by Defining
Uninitialized Variables
1 Define the variable with coder.nullcopycoder.nullcopycoder.nullcopy.

2 Initialize the variable before reading it.

When the uninitialized variable is an array, you must initialize all of its
elements before passing the array as an input to a function or operator
— even if the function or operator does not read from the uninitialized
portion of the array.

14-7

14 Defining MATLAB® Variables for C/C++ Code Generation

What happens if you access uninitialized data?

Uninitialized memory contains arbitrary values. Therefore, accessing
uninitialized data may lead to segmentation violations or nondeterministic
program behavior (different runs of the same program may yield
inconsistent results).

Defining Uninitialized Variables
In the following code, the assignment statement X = zeros(1,N) not only
defines X to be a 1-by-5 vector of real doubles, but also initializes each element
of X to zero.

function X = fcn %#codegen

N = 5;
X = zeros(1,N);
for i = 1:N

if mod(i,2) == 0
X(i) = i;

else
X(i) = 0;

end
end

This forced initialization creates an extra copy in the generated code. To
eliminate this overhead, use coder.nullcopy in the definition of X:

function X = fcn2 %#codegen

N = 5;
X = coder.nullcopy(zeros(1,N));
for i = 1:N

if mod(i,2) == 0
X(i) = i;

else
X(i) = 0;

end
end

14-8

Reassignment of Variable Properties

Reassignment of Variable Properties
For C/C++ code generation, there are certain variables that you can reassign
after the initial assignment with a value of different class, size, or complexity:

Dynamically sized variables

A variable can hold values that have the same class and complexity but
different sizes. If the size of the initial assignment is not constant, the
variable is dynamically sized in generated code. For more information, see
“Variable-Size Data”“Variable-Size Data”“Variable-Size Data”.

Variables reused in the code for different purposes

You can reassign the type (class, size, and complexity) of a variable after the
initial assignment if each occurrence of the variable can have only one type.
In this case, the variable is renamed in the generated code to create multiple
independent variables. For more information, see “Reuse the Same Variable
with Different Properties” on page 14-11.

14-9

14 Defining MATLAB® Variables for C/C++ Code Generation

Define and Initialize Persistent Variables
Persistent variables are local to the function in which they are defined,
but they retain their values in memory between calls to the function. To
define persistent variables for C/C++ code generation, use the persistent
statement, as in this example:

persistent PROD_X;

The definition should appear at the top of the function body, after the
header and comments, but before the first use of the variable. During code
generation, the value of the persistent variable is initialized to an empty
matrix by default. You can assign your own value after the definition by using
the isempty statement, as in this example:

function findProduct(inputvalue) %#codegen
persistent PROD_X

if isempty(PROD_X)
PROD_X = 1;

end
PROD_X = PROD_X * inputvalue;
end

14-10

Reuse the Same Variable with Different Properties

Reuse the Same Variable with Different Properties

In this section...

“When You Can Reuse the Same Variable with Different Properties” on
page 14-11

“When You Cannot Reuse Variables” on page 14-12

“Limitations of Variable Reuse” on page 14-14

When You Can Reuse the Same Variable with
Different Properties
You can reuse (reassign) an input, output, or local variable with different
class, size, or complexity if MATLAB can unambiguously determine the
properties of each occurrence of this variable during C/C++ code generation.
If so, MATLAB creates separate uniquely named local variables in the
generated code. You can view these renamed variables in the code generation
report (see “Viewing Variables in Your MATLAB Code”“Create and Use
Fixed-Point Code Generation Reports” on page 8-52“Viewing Variables in
Your MATLAB Code”).

A common example of variable reuse is in if-elseif-else or switch-case
statements. For example, the following function example1 first uses the
variable t in an if statement, where it holds a scalar double, then reuses t
outside the if statement to hold a vector of doubles.

function y = example1(u) %#codegen
if all(all(u>0))

% First, t is used to hold a scalar double value
t = mean(mean(u)) / numel(u);
u = u - t;

end
% t is reused to hold a vector of doubles
t = find(u > 0);
y = sum(u(t(2:end-1)));

To compile this example and see how MATLAB renames the reused variable t,
see Variable Reuse in an if Statement on page 14-12.

14-11

14 Defining MATLAB® Variables for C/C++ Code Generation

When You Cannot Reuse Variables
You cannot reuse (reassign) variables if it is not possible to determine the
class, size, and complexity of an occurrence of a variable unambiguously
during code generation. In this case, variables cannot be renamed and a
compilation error occurs.

For example, the following example2 function assigns a fixed-point value to
x in the if statement and reuses x to store a matrix of doubles in the else
clause. It then uses x after the if-else statement. This function generates a
compilation error because after the if-else statement, variable x can have
different properties depending on which if-else clause executes.

function y = example2(use_fixpoint, data) %#codegen
if use_fixpoint
% x is fixed-point

x = fi(data, 1, 12, 3);
else

% x is a matrix of doubles
x = data;

end
% When x is reused here, it is not possible to determine its
% class, size, and complexity
t = sum(sum(x));
y = t > 0;

end

Variable Reuse in an if Statement

To see how MATLAB renames a reused variable t:

1 Create a MATLAB file example1.m containing the following code.

function y = example1(u) %#codegen
if all(all(u>0))

% First, t is used to hold a scalar double value
t = mean(mean(u)) / numel(u);
u = u - t;

end
% t is reused to hold a vector of doubles
t = find(u > 0);

14-12

Reuse the Same Variable with Different Properties

y = sum(u(t(2:end-1)));
end

2 Compile example1.

For example, to generate a MEX function, enter:

codegen -o example1x -report example1.m -args {ones(5,5)}

Note codegen requires a MATLAB Coder license.

When the compilation is complete, codegen generates a MEX function,
example1x in the current folder, and provides a link to the code generation
report.

3 Open the code generation report.

4 In the MATLAB code pane of the code generation report, place your pointer
over the variable t inside the if statement.

The code generation report highlights both instances of t in the if
statement because they share the same class, size, and complexity. It
displays the data type information for t at this point in the code. Here,
t is a scalar double.

5 In the MATLAB code pane of the report, place your pointer over the
variable t outside the for-loop.

14-13

14 Defining MATLAB® Variables for C/C++ Code Generation

This time, the report highlights both instances of t outside the if
statement. The report indicates that tmight hold up to 25 doubles. The size
of t is :25, that is, a column vector containing a maximum of 25 doubles.

6 Click the Variables tab to view the list of variables used in example1.

The report displays a list of all the variables in example1. There are two
uniquely named local variables t>1 and t>2.

7 In the list of variables, place your pointer over t>1.

The code generation report highlights both instances of t in the if
statement.

8 In the list of variables, place your pointer over t>2

The code generation report highlights both instances of t outside the if
statement.

Limitations of Variable Reuse
The following variables cannot be renamed in generated code:

• Persistent variables.

• Global variables.

• Variables passed to C code using coder.ref, coder.rref, coder.wref.

• Variables whose size is set using coder.varsize.

• Variables whose names are controlled using coder.cstructname.

• The index variable of a for-loop when it is used inside the loop body.

14-14

Reuse the Same Variable with Different Properties

• The block outputs of a MATLAB Function block in a Simulink model.

• Chart-owned variables of a MATLAB function in a Stateflow chart.

14-15

14 Defining MATLAB® Variables for C/C++ Code Generation

Avoid Overflows in for-Loops
When memory integrity checks are enabled, if the code generation software
detects that a loop variable might overflow on the last iteration of the
for-loop, it reports an error.

To avoid this error, use the workarounds provided in the following table.

Loop conditions causing the
error

Workaround

• The loop counter increments by 1

• The end value equals the
maximum value of the integer
type

• The loop is not covering the full
range of the integer type

Rewrite the loop so that the end
value is not equal to the maximum
value of the integer type. For
example, replace:

N=intmax('int16')
for k=N-10:N

with:

for k=1:10

• The loop counter decrements by 1

• The end value equals the
minimum value of the integer
type

• The loop is not covering the full
range of the integer type

Rewrite the loop so that the end
value is not equal to the minimum
value of the integer type. For
example, replace:

N=intmin('int32')
for k=N+10:-1:N

with:

for k=10:-1:1

14-16

Avoid Overflows in for-Loops

Loop conditions causing the
error

Workaround

• The loop counter increments or
decrements by 1

• The start value equals the
minimum or maximum value of
the integer type

• The end value equals the
maximum or minimum value of
the integer type

The loop covers the full range of the
integer type.

Rewrite the loop casting the type
of the loop counter start, step, and
end values to a bigger integer or to
double For example, rewrite:

M= intmin('int16');
N= intmax('int16');
for k=M:N
% Loop body

end

to

M= intmin('int16');
N= intmax('int16');
for k=int32(M):int32(N)
% Loop body

end

• The loop counter increments or
decrements by a value not equal
to 1

• On last loop iteration, the loop
variable value is not equal to the
end value

Note The software error checking
might be too conservative and report
the possibility of an infinite under
these circumstances even though an
infinite loop would never occur.

Rewrite the loop so that the loop
variable on the last loop iteration is
equal to the end value.

14-17

14 Defining MATLAB® Variables for C/C++ Code Generation

Supported Variable Types
You can use the following data types for C/C++ code generation from
MATLAB:

Type Description

char Character array (string)

complex Complex data. Cast function takes real and imaginary
components

double Double-precision floating point

int8, int16, int32 Signed integer

logical Boolean true or false

single Single-precision floating point

struct Structure

uint8, uint16,
uint32

Unsigned integer

Fixed-point See “Fixed-Point Data Types” on page 1-2.

14-18

15

Design Considerations for
C/C++ Code Generation

• “When to Generate Code from MATLAB Algorithms” on page 15-2

• “Which Code Generation Feature to Use” on page 15-4

• “Prerequisites for C/C++ Code Generation from MATLAB” on page 15-6

• “MATLAB Code Design Considerations for Code Generation” on page 15-7

• “Expected Differences in Behavior After Compiling MATLAB Code” on
page 15-9

• “MATLAB Language Features Supported for C/C++ Code Generation” on
page 15-13

15 Design Considerations for C/C++ Code Generation

When to Generate Code from MATLAB Algorithms
Generating code from MATLAB algorithms for desktop and embedded
systems allows you to perform your software design, implementation, and
testing completely within the MATLAB workspace. You can:

• Verify that your algorithms are suitable for code generation

• Generate efficient, readable, and compact C/C++ code automatically, which
eliminates the need to manually translate your MATLAB algorithms and
minimizes the risk of introducing errors in the code.

• Modify your design in MATLAB code to take into account the specific
requirements of desktop and embedded applications, such as data type
management, memory use, and speed.

• Test the generated code and easily verify that your modified algorithms are
functionally equivalent to your original MATLAB algorithms.

• Generate MEX functions to:

- Accelerate MATLAB algorithms in certain applications.

- Speed up fixed-point MATLAB code.

• Generate hardware description language (HDL) from MATLAB code.

When Not to Generate Code from MATLAB Algorithms
Do not generate code from MATLAB algorithms for the following applications.
Use the recommended MathWorks product instead.

To: Use:

Deploy an application that uses
handle graphics

MATLAB Compiler™

Use Java™ MATLAB Builder™ JA

Use toolbox functions that do not
support code generation

Toolbox functions that you rewrite for
desktop and embedded applications

Deploy MATLAB based GUI
applications on a supported
MATLAB host

MATLAB Compiler

15-2

When to Generate Code from MATLAB® Algorithms

To: Use:

Deploy web-based or Windows
applications

• MATLAB Builder NE

• MATLAB Builder JA

Interface C code with MATLAB MATLAB mex function

15-3

15 Design Considerations for C/C++ Code Generation

Which Code Generation Feature to Use

To... Use... Required Product To Explore Further...

Generate MEX
functions for verifying
generated code

codegen function MATLAB Coder Try this in “MEX
Function Generation
at the Command
Line”.

MATLAB Coder user
interface

MATLAB Coder Try this in “C Code
Generation Using the
Project Interface”.

Produce readable,
efficient, and compact
code from MATLAB
algorithms for
deployment to desktop
and embedded
systems.

codegen function MATLAB Coder Try this in “C Code
Generation at the
Command Line”.

MATLAB Coder user
interface

MATLAB CoderGenerate MEX
functions to accelerate
MATLAB algorithms codegen function MATLAB Coder

See “Accelerate
MATLAB
Algorithms”.

Integrate MATLAB
code into Simulink

MATLAB Function
block

Simulink Try this in “Track
Object Using
MATLAB Code”.

Speed up fixed-point
MATLAB code

fiaccel function Fixed-Point Toolbox Learn more in “Code
Acceleration and
Code Generation from
MATLAB” on page
8-3.

Integrate custom C
code into MATLAB
and generate efficient,
readable code

codegen function MATLAB Coder Learn more in
“Custom C/C++ Code
Integration”.

15-4

Which Code Generation Feature to Use

To... Use... Required Product To Explore Further...

Integrate custom
C code into code
generated from
MATLAB

coder.ceval function MATLAB Coder Learn more in
coder.ceval.

Generate HDL from
MATLAB code

MATLAB Function
block

Simulink and
HDL Coder™

Learn more at
www.mathworks.com/
products/slhdlcoder.

15-5

http://www.mathworks.com/products/slhdlcoder/
http://www.mathworks.com/products/slhdlcoder/

15 Design Considerations for C/C++ Code Generation

Prerequisites for C/C++ Code Generation from MATLAB
To generate C/C++ or MEX code from MATLAB algorithms, you must install
the following software:

• MATLAB Coder product

• C/C++ compiler

15-6

MATLAB® Code Design Considerations for Code Generation

MATLAB Code Design Considerations for Code Generation
When writing MATLAB code that you want to convert into efficient,
standalone C/C++ code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before
use, MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You
can define inputs, outputs, and local variables in MATLAB functions to
represent data that varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory
allocation.

With dynamic memory allocation, you potentially use less memory at the
expense of time to manage the memory. With static memory, you get best
speed performance, but with higher memory usage. Most MATLAB code
takes advantage of the dynamic sizing features in MATLAB, therefore
dynamic memory allocation typically enables you to generate code from
existing MATLAB code without modifying it much. Dynamic memory
allocation also allows some programs to compile even when upper bounds
cannot be found.

Static allocation reduces the memory footprint of the generated code, and
therefore is suitable for applications where there is a limited amount of
available memory, such as embedded applications.

• Speed

Because embedded applications must run in real time, the code must be
fast enough to meet the required clock rate.

To improve the speed of the generated code:

- Choose a suitable C/C++ compiler. The default compiler that MathWorks
supplies with MATLAB for Windows 32-bit platforms is not a good
compiler for performance.

- Consider disabling run-time checks.

15-7

15 Design Considerations for C/C++ Code Generation

By default, for safety, the code generated for your MATLAB code
contains memory integrity checks and responsiveness checks. Generally,
these checks result in more generated code and slower simulation.
Disabling run-time checks usually results in streamlined generated code
and faster simulation. Disable these checks only if you have verified that
array bounds and dimension checking is unnecessary.

See Also

• “Data Definition Basics”“Data Definition Basics”“Data Definition Basics”

• “Variable-Size Data”“Variable-Size Data”“Variable-Size Data”

• “Bounded Versus Unbounded Variable-Size Data”“Bounded Versus
Unbounded Variable-Size Data” on page 21-4“Bounded Versus Unbounded
Variable-Size Data”

• “Control Dynamic Memory Allocation”“Control Dynamic Memory
Allocation” on page 8-93

• “Control Run-Time Checks”“Control Run-Time Checks” on page 8-71

15-8

Expected Differences in Behavior After Compiling MATLAB® Code

Expected Differences in Behavior After Compiling MATLAB
Code

In this section...

“Why Are There Differences?” on page 15-9

“Character Size” on page 15-9

“Order of Evaluation in Expressions” on page 15-9

“Termination Behavior” on page 15-10

“Size of Variable-Size N-D Arrays” on page 15-10

“Size of Empty Arrays” on page 15-11

“Floating-Point Numerical Results” on page 15-11

“NaN and Infinity Patterns” on page 15-12

“Code Generation Target” on page 15-12

“MATLAB Class Initial Values” on page 15-12

“Variable-Size Support for Code Generation” on page 15-12

Why Are There Differences?
To convert MATLAB code to C/C++ code that works efficiently, the code
generation process introduces optimizations that intentionally cause the
generated code to behave differently — and sometimes produce different
results — from the original source code. This section describes these
differences.

Character Size
MATLAB supports 16-bit characters, but the generated code represents
characters in 8 bits, the standard size for most embedded languages like C.
See “Code Generation for Characters” on page 12-6.

Order of Evaluation in Expressions
Generated code does not enforce order of evaluation in expressions. For most
expressions, order of evaluation is not significant. However, for expressions

15-9

15 Design Considerations for C/C++ Code Generation

with side effects, the generated code may produce the side effects in different
order from the original MATLAB code. Expressions that produce side effects
include those that:

• Modify persistent or global variables

• Display data to the screen

• Write data to files

• Modify the properties of handle class objects

In addition, the generated code does not enforce order of evaluation of logical
operators that do not short circuit.

For more predictable results, it is good coding practice to split expressions
that depend on the order of evaluation into multiple statements. For example,
rewrite:

A = f1() + f2();

as

A = f1();
A = A + f2();

so that the generated code calls f1 before f2.

Termination Behavior
Generated code does not match the termination behavior of MATLAB source
code. For example, optimizations remove infinite loops from generated code if
they have no side effects. As a result, the generated code may terminate even
though the corresponding MATLAB code does not.

Size of Variable-Size N-D Arrays
For variable-size N-D arrays, the size function might return a different
result in generated code than in MATLAB source code. The size function
sometimes returns trailing ones (singleton dimensions) in generated code, but
always drops trailing ones in MATLAB. For example, for an N-D array X with
dimensions [4 2 1 1], size(X) might return [4 2 1 1] in generated code,

15-10

Expected Differences in Behavior After Compiling MATLAB® Code

but always returns [4 2] in MATLAB. See “Incompatibility with MATLAB in
Determining Size of Variable-Size N-D Arrays” on page 21-29.

Size of Empty Arrays
The size of an empty array in generated code might be different from its size
in MATLAB source code. See “Incompatibility with MATLAB in Determining
Size of Empty Arrays” on page 21-30.

Floating-Point Numerical Results
The generated code might not produce the same floating-point numerical
results as MATLAB in the following situations:

When computer hardware uses extended precision registers

Results vary depending on how the C/C++ compiler allocates extended
precision floating-point registers. Computation results might not match
MATLAB calculations because of different compiler optimization settings or
different code surrounding the floating-point calculations.

For certain advanced library functions

The generated code might use different algorithms to implement certain
advanced library functions, such as fft, svd, eig, mldivide, and mrdivide.

For example, the generated code uses a simpler algorithm to implement
svd to accommodate a smaller footprint. Results might also vary according
to matrix properties. For example, MATLAB might detect symmetric or
Hermitian matrices at run time and switch to specialized algorithms that
perform computations faster than implementations in the generated code.

For implementation of BLAS library functions

For implementations of BLAS library functions. Generated C/C++ code uses
reference implementations of BLAS functions, which may produce different
results from platform-specific BLAS implementations in MATLAB.

15-11

15 Design Considerations for C/C++ Code Generation

NaN and Infinity Patterns
The generated code might not produce exactly the same pattern of NaN and inf
values as MATLAB code when these values are mathematically meaningless.
For example, if MATLAB output contains a NaN, output from the generated
code should also contain a NaN, but not necessarily in the same place.

Code Generation Target
The coder.target function returns different values in MATLAB than in the
generated code. The intent is to help you determine whether your function
is executing in MATLAB or has been compiled for a simulation or code
generation target. See coder.targetcoder.target.

MATLAB Class Initial Values
MATLAB computes class initial values at class loading time before code
generation. The code generation software uses the value that MATLAB
computed, it does not recompute the initial value. If the initialization uses
a function call to compute the initial value, the code generation software
does not execute this function. If the function modifies a global state, for
example, a persistent variable, code generation software might provide a
different initial value than MATLAB. For more information, see “Defining
Class Properties for Code Generation”“Defining Class Properties for Code
Generation” on page 11-5“Defining Class Properties for Code Generation”.

Variable-Size Support for Code Generation
For incompatibilities with MATLAB in variable-size support for code
generation, see:

• “Incompatibility with MATLAB for Scalar Expansion”

• “Incompatibility with MATLAB in Determining Size of Variable-Size N-D
Arrays”

• “Incompatibility with MATLAB in Determining Size of Empty Arrays”

• “Incompatibility with MATLAB in Vector-Vector Indexing”

• “Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation”

15-12

MATLAB® Language Features Supported for C/C++ Code Generation

MATLAB Language Features Supported for C/C++ Code
Generation

MATLAB supports the following language features in generated code:

• N-dimensional arrays

• Matrix operations, including deletion of rows and columns

• Variable-sized data (see “Variable-Size Data Definition for Code
Generation” on page 21-3)

• Subscripting (see “Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation” on page 21-32)

• Complex numbers (see “Code Generation for Complex Data” on page 12-4)

• Numeric classes (see “Supported Variable Types” on page 14-18)

• Double-precision, single-precision, and integer math

• Fixed-point arithmetic (see “Code Acceleration and Code Generation from
MATLAB” on page 8-3)

• Program control statements if, switch, for, and while

• All arithmetic, relational, and logical operators

• Local functions

• Persistent variables (see “Define and Initialize Persistent Variables” on
page 14-10)

• Global variables (see “Specifying Global Variable Type and Initial Value in
a Project”).

• Structures

• Characters (see “Code Generation for Characters” on page 12-6)

• Function handles

• Frames (see “Add Frame-Based Signals”)

• Variable length input and output argument lists

• Subset of MATLAB toolbox functions

• MATLAB classes

15-13

15 Design Considerations for C/C++ Code Generation

• Ability to call functions (see “Resolution of Function Calls in MATLAB
Generated Code” on page 10-2)

MATLAB Language Features Not Supported for C/C++
Code Generation
MATLAB does not support the following features in generated code:

• Anonymous functions

• Cell arrays

• Java

• Nested functions

• Recursion

• Sparse matrices

• try/catch statements

15-14

16

Code Generation for
Enumerated Data

• “Enumerated Data Definition for Code Generation” on page 16-2

• “Enumerated Types Supported for Code Generation” on page 16-3

• “When to Use Enumerated Data for Code Generation” on page 16-6

• “Generate Code for Enumerated Data from MATLAB Algorithms” on page
16-7

• “Generate Code for Enumerated Data from MATLAB Function Blocks”
on page 16-9

• “Define Enumerated Data for Code Generation” on page 16-10

• “Instantiate Enumerated Types for Code Generation” on page 16-12

• “Operations on Enumerated Data Allowed for Code Generation” on page
16-13

• “Include Enumerated Data in Control Flow Statements” on page 16-16

• “Customize Enumerated Types Based on int32” on page 16-22

• “Customize Enumerated Types Based on Simulink.IntEnumType” on page
16-28

• “Control Names of Enumerated Type Values in Generated Code” on page
16-29

• “Change and Reload Enumerated Data Types” on page 16-31

• “Restrictions on Use of Enumerated Data in for-Loops” on page 16-32

• “Toolbox Functions That Support Enumerated Types for Code Generation”
on page 16-33

16 Code Generation for Enumerated Data

Enumerated Data Definition for Code Generation
To generate efficient standalone code for enumerated data, you must define
and use enumerated types differently than you normally would when running
your code in the MATLAB environment:

What’s Different More Information

Supports integer-based enumerated
types only

“Enumerated Types Supported for
Code Generation” on page 16-3

Name of each enumerated data type
must be unique

“Naming Enumerated Types for
Code Generation” on page 16-11

Each enumerated data type must
be defined in a separate file on the
MATLAB path

“Define Enumerated Data for Code
Generation” on page 16-10 and “How
to Generate Code for Enumerated
Data” on page 16-7

Restricted set of operations “Operations on Enumerated Data
Allowed for Code Generation” on
page 16-13

Restricted use in for-loops “Restrictions on Use of Enumerated
Data in for-Loops” on page 16-32

What’s Different More Information

Supports integer-based enumerated
types only

“Enumerated Types Supported in
MATLAB Function Blocks”

Each enumerated data type must
be defined in a separate file on the
MATLAB path

“Define Enumerated Data Types for
MATLAB Function Blocks”

Restricted set of operations “Operations on Enumerated Data”

Restricted use in for-loops “Restrictions on Use of Enumerated
Data in for-Loops” on page 16-32

16-2

Enumerated Types Supported for Code Generation

Enumerated Types Supported for Code Generation

Enumerated Type Based on int32
This enumerated data type is based on the built-in type int32. Use this
enumerated type when generating code from MATLAB algorithms.

Syntax

classdef(Enumeration) type_name < int32

Example

classdef(Enumeration) PrimaryColors < int32
enumeration

Red(1),
Blue(2),
Yellow(4)

end
end

In this example, the statement classdef(Enumeration) PrimaryColors
< int32 means that the enumerated type PrimaryColors is based on the
built-in type int32. As such, PrimaryColors inherits the characteristics
of the int32 type, as well as defining its own unique characteristics. For
example, PrimaryColors is restricted to three enumerated values:

Enumerated Value Enumerated Name Underlying Numeric
Value

Red(1) Red 1

Blue(2) Blue 2

Yellow(4) Yellow 4

How to Use
Define enumerated data in MATLAB code and compile the source file. For
example, to generate C/C++ code from your MATLAB source, you can use

16-3

16 Code Generation for Enumerated Data

codegen, as described in “Generate Code for Enumerated Data from MATLAB
Algorithms” on page 16-7.

Note codegen requires a MATLAB Coder license.

Enumerated Type Based on Simulink.IntEnumType
This enumerated data type is based on the built-in type
Simulink.IntEnumType, which is available with a Simulink
license. Use this enumerated type when exchanging enumerated data with
Simulink blocks and Stateflow charts.

Syntax

classdef(Enumeration) type_name < Simulink.IntEnumType

Example

classdef(Enumeration) myMode < Simulink.IntEnumType
enumeration

OFF(0)
ON(1)

end
end

How to Use
Here are the basic guidelines for using enumerated data based on
Simulink.IntEnumType:

Application What to Do

When exchanging
enumerated data with
Simulink blocks

Define enumerated data in MATLAB
Function blocks in Simulink models.
Requires Simulink software.

When exchanging
enumerated data with
Stateflow charts

Define enumerated data in MATLAB
functions in Stateflow charts. Requires
Simulink and Stateflow software.

16-4

Enumerated Types Supported for Code Generation

See “About Simulink Enumerations” for more information about enumerated
types based on Simulink.IntEnumType

16-5

16 Code Generation for Enumerated Data

When to Use Enumerated Data for Code Generation
You can use enumerated types to represent program states and to control
program logic, especially when you need to restrict data to a finite set of
values and refer to these values by name. Even though you can sometimes
achieve these goals by using integers or strings, enumerated types offer the
following advantages:

• Provide more readable code than integers

• Allow more robust error checking than integers or strings

For example, if you mistype the name of an element in the enumerated
type, you get a compile-time error that the element does not belong to the
set of allowable values.

• Produce more efficient code than strings

For example, comparisons of enumerated values execute faster than
comparisons of strings.

16-6

Generate Code for Enumerated Data from MATLAB® Algorithms

Generate Code for Enumerated Data from MATLAB
Algorithms

Step Action How?

1
Define an enumerated data type
that inherits from int32.

See “Define Enumerated Data for
Code Generation” on page 16-10.

2
Instantiate the enumerated type
in your MATLAB algorithm.

See “Instantiate Enumerated
Types for Code Generation” on
page 16-12.

3
Compile the function with
codegen.

See “How to Generate Code for
Enumerated Data” on page 16-7.

This workflow requires a MATLAB Coder license.

How to Generate Code for Enumerated Data
Use the command codegen to generate MEX, C, or C++ code from the
MATLAB algorithm that contains the enumerated data (requires a MATLAB
Coder license). Each enumerated data type must be defined on the MATLAB
path in a separate file as a class derived from the built-in type int32. See
“Define Enumerated Data for Code Generation” on page 16-10.

If your function has inputs, you must specify the properties of these inputs
to codegen. For an enumerated data input, use the -args option to pass
one of its allowable values as a sample value. For example, the following
codegen command specifies that the function displayState takes one input
of enumerated data type sysMode.

codegen displayState -args {sysMode.ON}

After executing this command, codegen generates a platform-specific MEX
function that you can test in MATLAB. For example, to test displayState,
type the following command:

displayState(sysMode.OFF)

You should get the following result:

16-7

16 Code Generation for Enumerated Data

ans =

RED

16-8

Generate Code for Enumerated Data from MATLAB Function Blocks

Generate Code for Enumerated Data from MATLAB
Function Blocks

Step Action How?

1
Define an enumerated data
type that inherits from
Simulink.IntEnumType.

See “Define Enumerated Data
Types for MATLAB Function
Blocks”

2
Add the enumerated data to your
MATLAB Function block.

See “Add Inputs, Outputs, and
Parameters as Enumerated
Data”

3
Instantiate the enumerated type
in your MATLAB Function block.

See “Instantiate Enumerated
Data in MATLAB Function
Blocks”

4
Simulate and/or generate code. See “Enumerations”

This workflow requires the following licenses:

• Simulink (for simulation)

• MATLAB Coder and Simulink Coder (for code generation)

16-9

16 Code Generation for Enumerated Data

Define Enumerated Data for Code Generation
Follow these steps to define enumerated data for code generation from
MATLAB algorithms:

1 Create a class definition file.

In the MATLAB Command Window, select File > New > Class.

2 Enter the class definition as follows:

classdef(Enumeration) EnumTypeName < int32

For example, the following code defines an enumerated type called sysMode:

classdef(Enumeration) sysMode < int32
...

end

EnumTypeName is a case-sensitive string that must be unique among data
type names and workspace variable names. It must inherit from the
built-in type int32.

3 Define enumerated values in an enumeration section as follows:

classdef(Enumeration) EnumTypeName < int32
enumeration

EnumName(N)
...

end
end

For example, the following code defines a set of two values for enumerated
type sysMode:

classdef(Enumeration) sysMode < int32
enumeration

OFF(0)
ON(1)

end

end

16-10

Define Enumerated Data for Code Generation

An enumerated type can define any number of values. Each enumerated
value consists of a string EnumName and an underlying integer N. Each
EnumName must be unique within its type, but can also appear in other
enumerated types. The underlying integers need not be either consecutive
or ordered, nor must they be unique within the type or across types.

4 Save the file on the MATLAB path.

The name of the file must match the name of the enumerated data type.
The match is case sensitive.

To add a folder to the MATLAB search path, type addpath pathname at
the MATLAB command prompt. For more information, see “Using the
MATLAB Search Path”, addpath, and savepath.

For examples of enumerated data type definitions, see “Define Enumerated
Data for Code Generation” on page 16-10.

Naming Enumerated Types for Code Generation
You must use a unique name for each enumerated data type. The name of an
enumerated data type cannot match the name of a toolbox function supported
for code generation, or another data type or a variable in the MATLAB base
workspace. Otherwise, a name conflict occurs.

For example, you cannot name an enumerated data type mode because
MATLAB for code generation provides a toolbox function of the same name.

For a list of toolbox functions supported for code generation, see “Functions
Supported for Code Generation — Alphabetical List”“Functions Supported for
Code Generation — Alphabetical List” on page 20-2“Functions Supported for
Code Generation — Alphabetical List”.

16-11

16 Code Generation for Enumerated Data

Instantiate Enumerated Types for Code Generation
To instantiate an enumerated type for code generation from MATLAB
algorithms, use dot notation to specify ClassName.EnumName. For an example,
see “Include Enumerated Data in Control Flow Statements” on page 16-16.

16-12

Operations on Enumerated Data Allowed for Code Generation

Operations on Enumerated Data Allowed for Code
Generation

To generate efficient standalone code for enumerated data, you are restricted
to the following operations. The examples are based on the definitions of the
enumeration type LEDcolor described in “Class Definition: LEDcolor”“Class
Definition: LEDcolor” on page 16-16.

Assignment Operator, =

Example Result

xon = LEDcolor.GREEN
xoff = LEDcolor.RED

xon =

GREEN
xoff =

RED

Relational Operators, < > <= >= == ~=

Example Result

xon == xoff ans =

0

xon <= xoff ans =

1

xon > xoff ans =

0

16-13

16 Code Generation for Enumerated Data

Cast Operation

Example Result

double(LEDcolor.RED) ans =

2

z = 2
y = LEDcolor(z)

z =

2

y =

RED

Indexing Operation

Example Result

m = [1 2]
n = LEDcolor(m)
p = n(LEDcolor.GREEN)

m =

1 2

n =

GREEN RED

p =

GREEN

16-14

Operations on Enumerated Data Allowed for Code Generation

Control Flow Statements: if, switch, while

Statement Example Executable
Example

if
if state == sysMode.ON

led = LEDcolor.GREEN;
else

led = LEDcolor.RED;
end

“if Statement with
Enumerated Data
Types” on page
16-16

switch
switch button

case VCRButton.Stop
state = VCRState.Stop;

case VCRButton.PlayOrPause
state = VCRState.Play;

case VCRButton.Next
state = VCRState.Forward;

case VCRButton.Previous
state = VCRState.Rewind;

otherwise
state = VCRState.Stop;

end

“switch Statement
with Enumerated
Data Types” on
page 16-17

while
while state ~= State.Ready

switch state
case State.Standby

initialize();
state = State.Boot;

case State.Boot
boot();
state = State.Ready;

end
end

“while Statement
with Enumerated
Data Types” on
page 16-20

16-15

16 Code Generation for Enumerated Data

Include Enumerated Data in Control Flow Statements
The following control statements work with enumerated operands in
generated code. However, there are restrictions (see “Restrictions on Use of
Enumerated Data in for-Loops” on page 16-32).

if Statement with Enumerated Data Types
This example is based on the definition of the enumeration types LEDcolor
and sysMode. The function displayState uses these enumerated data types
to activate an LED display.

Class Definition: sysMode

classdef(Enumeration) sysMode < int32
enumeration

OFF(0)
ON(1)

end
end

This definition must reside on the MATLAB path in a file with the same
name as the class, sysMode.m.

Class Definition: LEDcolor

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),
RED(2),

end
end

This definition must reside on the MATLAB path in a file called LEDcolor.m.

MATLAB Function: displayState
This function uses enumerated data to activate an LED display, based on the
state of a device. It lights a green LED display to indicate the ON state and
lights a red LED display to indicate the OFF state.

16-16

Include Enumerated Data in Control Flow Statements

function led = displayState(state)
%#codegen

if state == sysMode.ON
led = LEDcolor.GREEN;

else
led = LEDcolor.RED;

end

Build and Test a MEX Function for displayState

1 Generate a MEX function for displayState. Use the -args option to pass
one of the allowable values for the enumerated data input as a sample
value.

codegen displayState -args {sysMode.ON}

2 Test the function. For example,

displayState(sysMode.OFF)

You should get the following result:

ans =

RED

switch Statement with Enumerated Data Types
This example is based on the definition of the enumeration types VCRState
and VCRButton. The function VCR uses these enumerated data types to set
the state of the VCR.

Class Definition: VCRState

classdef(Enumeration) VCRState < int32
enumeration

Stop(0),
Pause(1),
Play(2),
Forward(3),

16-17

16 Code Generation for Enumerated Data

Rewind(4)
end

end

This definition must reside on the MATLAB path in a file with the same
name as the class, VCRState.m.

Class Definition: VCRButton

classdef(Enumeration) VCRButton < int32
enumeration

Stop(1),
PlayOrPause(2),
Next(3),
Previous(4)

end
end

This definition must reside on the MATLAB path in a file with the same name
as the class, VCRButton.m.

MATLAB Function: VCR
This function uses enumerated data to set the state of a VCR, based on the
initial state of the VCR and the state of the VCR button.

function s = VCR(button)
%#codegen

persistent state

if isempty(state)
state = VCRState.Stop;

end

switch state
case {VCRState.Stop, VCRState.Forward, VCRState.Rewind}

state = handleDefault(button);
case VCRState.Play

switch button

16-18

Include Enumerated Data in Control Flow Statements

case VCRButton.PlayOrPause, state = VCRState.Pause;
otherwise, state = handleDefault(button);

end
case VCRState.Pause

switch button
case VCRButton.PlayOrPause, state = VCRState.Play;
otherwise, state = handleDefault(button);

end
end
s = state;

function state = handleDefault(button)
switch button

case VCRButton.Stop, state = VCRState.Stop;
case VCRButton.PlayOrPause, state = VCRState.Play;
case VCRButton.Next, state = VCRState.Forward;
case VCRButton.Previous, state = VCRState.Rewind;
otherwise, state = VCRState.Stop;

end

Build and Test a MEX Function for VCR

1 Generate a MEX function for VCR. Use the -args option to pass one of the
allowable values for the enumerated data input as a sample value.

codegen -args {VCRButton.Stop} VCR

2 Test the function. For example,

s = VCR(VCRButton.Stop)

You should get the following result:

s =

Stop

16-19

16 Code Generation for Enumerated Data

while Statement with Enumerated Data Types
This example is based on the definition of the enumeration type State. The
function Setup uses this enumerated data type to set the state of a device.

Class Definition: State

classdef(Enumeration) State < int32
enumeration

Standby(0),
Boot(1),
Ready(2)

end
end

This definition must reside on the MATLAB path in a file with the same
name as the class, State.m.

MATLAB Function: Setup
The following function Setup uses enumerated data to set the state of a device.

function s = Setup(initState)
%#codegen

state = initState;

if isempty(state)
state = State.Standby;

end

while state ~= State.Ready
switch state

case State.Standby
initialize();
state = State.Boot;

case State.Boot
boot();
state = State.Ready;

end
end

16-20

Include Enumerated Data in Control Flow Statements

s = state;

function initialize()
% Perform initialization.

function boot()
% Boot the device.

Build and Test a MEX Executable for Setup

1 Generate a MEX executable for Setup. Use the -args option to pass one of
the allowable values for the enumerated data input as a sample value.

codegen Setup -args {State.Standby}

2 Test the function. For example,

s = Setup(State.Standby)

You should get the following result:

s =

Ready

16-21

16 Code Generation for Enumerated Data

Customize Enumerated Types Based on int32

About Customizing Enumerated Types
You can customize an enumerated type by using the same techniques that
work with MATLAB classes, as described in Modifying Superclass Methods
and Properties. A primary source of customization are the methods associated
with an enumerated type.

Enumerated class definitions can include an optional methods section.
You can override the following methods to customize the behavior of an
enumerated type. To override a method, include a customized version of the
method in the methods section in the enumerated class definition. If you do
not want to override the inherited methods, omit the methods section.

16-22

Customize Enumerated Types Based on int32

Method Description Default Value
Returned or
Specified

When to Use

addClassNameToEnumNames Specifies whether
the class name
becomes a prefix in
the generated code.

true — prefix is
used

If you do not want
the class name to
become a prefix
in the generated
code, override
this method to set
the return value
to false. See
“Control Names
of Enumerated
Type Values in
Generated Code” on
page 16-29.

getDefaultValue Returns the default
enumerated value.

'' If you want the
default value for the
enumerated type
to be something
other than the
first value listed
in the enumerated
class definition,
override this
method to specify a
default value. See
“Specify a Default
Enumerated Value”
on page 16-24.

16-23

16 Code Generation for Enumerated Data

Method Description Default Value
Returned or
Specified

When to Use

getHeaderFile Specifies the file
in which the
enumerated class
is defined for code
generation.

'' If you want to use
an enumerated
class definition
that is specified in
a custom header
file, override this
method to return
the path to this
header file. In
this case, the code
generation software
does not generate
the class definition.
See “Specify a
Header File” on
page 16-25

Specify a Default Enumerated Value
The code generation software and related generated code use an enumerated
data type’s default value when you provide no other initial value.

Unless you specify otherwise, the default value for an enumerated type is the
first value in the enumerated class definition. To specify a different default
value, add your own getDefaultValue method to the methods section. The
following code shows a shell for the getDefaultValue method:

function retVal = getDefaultValue()
% GETDEFAULTVALUE Returns the default enumerated value.
% This value must be an instance of the enumerated class.
% If this method is not defined, the first enumerated value is used.

retVal = ThisClass.EnumName;
end

To customize this method, provide a value for ThisClass.EnumName that
specifies the desired default.ThisClass must be the name of the class within

16-24

Customize Enumerated Types Based on int32

which the method exists. EnumName must be the name of an enumerated value
defined in that class. For example:

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),
RED(2),

end
methods (Static)
function y = getDefaultValue()

y = LEDcolor.RED;
end

end
end

This example defines the default as LEDcolor.RED. If this method does not
appear, the default value would be LEDcolor.GREEN, because that is the first
value listed in the enumerated class definition.

Specify a Header File
To prevent the declaration of an enumerated type from being embedded in the
generated code, allowing you to provide the declaration in an external file,
include the following method in the enumerated class’s methods section:

function y = getHeaderFile()
% GETHEADERFILE File where type is defined for generated code.
% If specified, this file is #included where required in the code.
% Otherwise, the type is written out in the generated code.
y = 'filename';
end

Substitute any legal filename for filename. Be sure to provide a filename
suffix, typically .h. Providing the method replaces the declaration that would
otherwise have appeared in the generated code with a #include statement
like:

#include "imported_enum_type.h"

The getHeaderFile method does not create the declaration file itself. You
must provide a file of the specified name that declares the enumerated data

16-25

16 Code Generation for Enumerated Data

type. The file can also contain definitions of enumerated types that you do not
use in your MATLAB code.

For example, to use the definition of LEDcolor in my_LEDcolor.h:

1 Modify the definition of LEDcolor to override the getHeaderFile method
to return the name of the external header file:

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),
RED(2),

end

methods(Static)
function y=getHeaderFile()

y='my_LEDcolor.h';
end

end
end

2 In the current folder, provide a header file, my_LEDcolor.h, that contains
the definition:

typedef enum LEDcolor
{

GREEN = 1,
RED

} LEDcolor;

3 Generate a library for the function displayState that takes one input
of enumerated data type sysMode.

codegen -config:lib -report displayState -args {sysMode.ON}

codegen generates a C static library with the default name, displayState,
and supporting files in the default folder, codegen/lib/displayState.

4 Click the View Report link.

16-26

Customize Enumerated Types Based on int32

5 In the report, on the C Code tab, click the link to the
displayState_types.h file.

The header file contains a #include statement for the external header file.

#include "my_LEDcolor.h"

It does not include a declaration for the enumerated class.

16-27

16 Code Generation for Enumerated Data

Customize Enumerated Types Based on
Simulink.IntEnumType

You can customize a Simulink enumerated type by using the same techniques
that work with MATLAB classes, as described in Modifying Superclass
Methods and Properties. For more information, see “Customize Simulink
Enumeration”.

16-28

Control Names of Enumerated Type Values in Generated Code

Control Names of Enumerated Type Values in Generated
Code

This example shows how to control the name of enumerated type values in
code generated by MATLAB Coder. (Requires a MATLAB Coder license.)
The example uses the enumerated data type definitions and function
displayState described in “Include Enumerated Data in Control Flow
Statements” on page 16-16.

1 Generate a library for the function displayState that takes one input
of enumerated data type sysMode.

codegen -config:lib -report displayState -args {sysMode.ON}

codegen generates a C static library with the default name, displayState,
and supporting files in the default folder, codegen/lib/displayState.

2 Click the View Report link.

3 In the report, on the C Code tab, click the link to the
displayState_types.h file.

The report displays the header file containing the enumerated data type
definition.

typedef enum LEDcolor
{

LEDcolor_GREEN = 1,
LEDcolor_RED

} LEDcolor;

The enumerated value names include the class name prefix LEDcolor_.

4 Modify the definition of LEDcolor to override the
addClassNameToEnumNames method. Set the return value to false instead
of true so that the enumerated value names in the generated code do not
contain the class prefix.

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),

16-29

16 Code Generation for Enumerated Data

RED(2),
end

methods(Static)
function y=addClassNameToEnumNames()

y=false;
end

end
end

5 Clear existing class instances:

clear classes

6 Generate code again.

codegen -config:lib -report displayState -args {sysMode.ON}

7 Open the code generation report and look at the enumerated type definition
in displayState_types.h.

typedef enum LEDcolor
{

GREEN = 1,
RED

} LEDcolor;

This time the enumerated value names do not include the class name prefix.

For more information, see:

• codegen

• “Include Enumerated Data in Control Flow Statements” on page 16-16 for
a description of the example function displayState and its enumerated
type definitions

16-30

Change and Reload Enumerated Data Types

Change and Reload Enumerated Data Types
You can change the definition of an enumerated data type by editing and
saving the file that contains the definition. You do not need to inform
MATLAB that a class definition has changed. MATLAB automatically reads
the modified definition when you save the file. However, the class definition
changes do not take full effect if any class instances (enumerated values) exist
that reflect the previous class definition. Such instances might exist in the
base workspace or might be cached. The following table explains options for
removing instances of an enumerated data type from the base workspace
and cache.

If In Base Workspace... If In Cache...

Do one of the following:
• Locate and delete specific obsolete
instances.

• Delete the classes from the
workspace by using the clear
classes command. For more
information, see clear.

• Clear MEX functions that are
caching instances of the class.

16-31

16 Code Generation for Enumerated Data

Restrictions on Use of Enumerated Data in for-Loops
Do not use enumerated data as the loop counter variable in for-
loops

To iterate over a range of enumerated data with consecutive values, you can
cast the enumerated data to int32 in the loop counter.

For example, suppose you define an enumerated type ColorCodes as follows:

classdef(Enumeration) ColorCodes < int32
enumeration

Red(1),
Blue(2),
Green(3)
Yellow(4)
Purple(5)

end
end

Because the enumerated values are consecutive, you can use ColorCodes
data in a for-loop like this:

...
for i = int32(ColorCodes.Red):int32(ColorCodes.Purple)

c = ColorCodes(i);
...

end

16-32

Toolbox Functions That Support Enumerated Types for Code Generation

Toolbox Functions That Support Enumerated Types for
Code Generation

The following MATLAB toolbox functions support enumerated types for code
generation:

• cast

• cat

• circshift

• flipdim

• fliplr

• flipud

• histc

• ipermute

• isequal

• isequaln

• isfinite

• isinf

• isnan

• issorted

• length

• permute

• repmat

• reshape

• rot90

• shiftdim

• sort

• sortrows

16-33

16 Code Generation for Enumerated Data

• squeeze

16-34

17

Code Generation for
Function Handles

• “Function Handles Definition for Code Generation” on page 17-2

• “Define and Pass Function Handles for Code Generation” on page 17-3

• “Define and Pass Function Handles for Code Acceleration” on page 17-5

• “Function Handle Limitations for Code Generation” on page 17-7

17 Code Generation for Function Handles

Function Handles Definition for Code Generation
You can use function handles to invoke functions indirectly and parameterize
operations that you repeat frequently. You can perform the following
operations with function handles:

• Define handles that reference user-defined functions and built-in
functions supported for code generation (see “Functions Supported for
Code Generation — Alphabetical List”“Functions Supported for Code
Generation — Alphabetical List” on page 20-2“Functions Supported for
Code Generation — Alphabetical List”)

Note You cannot define handles that reference extrinsic MATLAB
functions.

• Define function handles as scalar values

• Pass function handles as arguments to other functions (excluding extrinsic
functions)

To generate efficient standalone code for enumerated data, you are restricted
to using a subset of the operations you can perform with function handles in
MATLAB, as described in “Function Handle Limitations for Code Generation”
on page 17-7

17-2

Define and Pass Function Handles for Code Generation

Define and Pass Function Handles for Code Generation
The following code example shows how to define and call function handles for
code generation. You can copy the example to a MATLAB Function block
in Simulink or MATLAB function in Stateflow. To convert this function to
a MEX function using codegen, uncomment the two calls to the assert
function, highlighted below:

function addval(m)
%#codegen

% Define class and size of primary input m
% Uncomment next two lines to build MEX function with codegen
% assert(isa(m,'double'));
% assert(all (size(m) == [3 3]));

% Pass function handle to addone
% to add one to each element of m
m = map(@addone, m);
disp(m);

% Pass function handle to addtwo
% to add two to each element of m
m = map(@addtwo, m);
disp(m);

function y = map(f,m)
y = m;
for i = 1:numel(y)

y(i) = f(y(i));
end

function y = addone(u)
y = u + 1;

function y = addtwo(u)
y = u + 2;

This code passes function handles @addone and @addtwo to the function map
which increments each element of the matrix m by the amount prescribed

17-3

17 Code Generation for Function Handles

by the referenced function. Note that map stores the function handle in the
input variable f and then uses f to invoke the function — in this case addone
first and then addtwo.

If you have MATLAB Coder, you can use the function codegen to convert the
function addval to a MEX executable that you can run in MATLAB. Follow
these steps:

1 At the MATLAB command prompt, issue this command:

codegen addval

2 Define and initialize a 3-by-3 matrix by typing a command like this at
the MATLAB prompt:

m = zeros(3)

3 Execute the function by typing this command:

addval(m)

You should see the following result:

0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

3 3 3
3 3 3
3 3 3

For more information, see “MEX Function Generation at the Command Line”.

17-4

Define and Pass Function Handles for Code Acceleration

Define and Pass Function Handles for Code Acceleration
The following code example shows how to define and call function handles
for code acceleration.

function [y1, y2] = addval(m)
%#codegen

disp(m);

% Pass function handle to addone
% to add one to each element of m
y1 = map(@addone, m);
disp(y1);

% Pass function handle to addtwo
% to add two to each element of m
y2 = map(@addtwo, m);
disp(y2);

function y = map(f,m)
y = m;
for i = 1:numel(y)

y(i) = f(y(i));
end

function y = addone(u)
y = u + 1;

function y = addtwo(u)
y = u + 2;

This code passes function handles @addone and @addtwo to the function map
which increments each element of the matrix m by the amount prescribed
by the referenced function. Note that map stores the function handle in the
input variable f and then uses f to invoke the function — in this case addone
first and then addtwo.

You can use the function fiaccel to convert the function addval to a MEX
executable that you can run in MATLAB. Follow these steps:

17-5

17 Code Generation for Function Handles

1 At the MATLAB command prompt, iDefine and initialize a 3-by-3 matrix
by typing a command like this at the MATLAB prompt:

m = fi(magic(3));

2 Use fiaccel to compile the function to a MEX executable:

fiaccel addval -args {m}

3 Execute the function by typing this command:

[y1, y2] = addval_mex(m);
8 1 6
3 5 7
4 9 2

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 11
9 2 7
4 6 8
5 10 3

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 11
10 3 8
5 7 9
6 11 4

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 11

17-6

Function Handle Limitations for Code Generation

Function Handle Limitations for Code Generation
Function handles must be scalar values.

You cannot store function handles in matrices or structures.

You cannot use the same bound variable to reference different
function handles.

After you bind a variable to a specific function, you cannot use the same
variable to reference two different function handles, as in this example

%Incorrect code
...
x = @plus;
x = @minus;
...

This code produces a compilation error.

You cannot pass function handles to or from extrinsic functions.

You cannot pass function handles to or from feval and other extrinsic
MATLAB functions. For more information, see “Declaring MATLAB
Functions as Extrinsic Functions” on page 10-12

You cannot pass function handles to or from primary functions.

You cannot pass function handles as inputs to or outputs from primary
functions. For example, consider this function:

function x = plotFcn(fhandle, data)

assert(isa(fhandle,'function_handle') && isa(data,'double'));

plot(data, fhandle(data));
x = fhandle(data);

In this example, the function plotFcn receives a function handle and its
data as primary inputs. plotFcn attempts to call the function referenced by

17-7

17 Code Generation for Function Handles

the fhandle with the input data and plot the results. However, this code
generates a compilation error, indicating that the function isa does not
recognize 'function_handle' as a class name when called inside a MATLAB
function to specify properties of primary inputs.

You cannot view function handles from the debugger

You cannot display or watch function handles from the debugger. They
appear as empty matrices.

17-8

18

Generating Efficient and
Reusable Code

• “Unroll for-Loops” on page 18-2

• “Inline Functions” on page 18-3

• “Eliminate Redundant Copies of Function Inputs” on page 18-4

• “Generate Reusable Code” on page 18-6

18 Generating Efficient and Reusable Code

Unroll for-Loops
Unrolling for-loops eliminates the loop logic by creating a separate copy of the
loop body in the generated code for each iteration. Within each iteration, the
loop index variable becomes a constant. By unrolling short loops with known
bounds at compile time, MATLAB generates highly optimized code with no
branches.

You can also force loop unrolling for individual functions by wrapping
the loop header in a coder.unroll function. For more information, see
coder.unrollcoder.unrollcoder.unroll.

18-2

Inline Functions

Inline Functions
MATLAB uses internal heuristics to determine whether or not to
inline functions in the generated code. You can use the coder.inline
directive to fine-tune these heuristics for individual functions. See
coder.inlinecoder.inlinecoder.inline.

18-3

18 Generating Efficient and Reusable Code

Eliminate Redundant Copies of Function Inputs
You can reduce the number of copies in your generated code by writing
functions that use the same variable as both an input and an output. For
example:

function A = foo(A, B) %#codegen
A = A * B;
end

This coding practice uses a reference parameter optimization. When a
variable acts as both input and output, MATLAB passes the variable by
reference in the generated code instead of redundantly copying the input to a
temporary variable. For example, input A above is passed by reference in the
generated code because it also acts as an output for function foo:

...
/* Function Definitions */
void foo(real_T *A, real_T B)
{

*A *= B;
}
...

The reference parameter optimization reduces memory usage and improves
run-time performance, especially when the variable passed by reference is
a large data structure. To achieve these benefits at the call site, call the
function with the same variable as both input and output.

By contrast, suppose you rewrite function foo without using this optimization:

function y = foo2(A, B) %#codegen
y = A * B;
end

In this case, MATLAB generates code that passes the inputs by value and
returns the value of the output:

...
/* Function Definitions */
real_T foo2(real_T A, real_T B)

18-4

Eliminate Redundant Copies of Function Inputs

{
return A * B;

}
...

18-5

18 Generating Efficient and Reusable Code

Generate Reusable Code
With MATLAB, you can generate reusable code in the following ways:

• Write reusable functions using standard MATLAB function file names
which you can call from different locations, for example, in a Simulink
model or MATLAB function library.

• Compile external functions on the MATLAB path and integrate them into
generated C code for embedded targets.

See “Resolution of Function Calls in MATLAB Generated Code” on page 10-2.

Common applications include:

• Overriding generated library function with a custom implementation

• Implementing a reusable library on top of standard library functions that
can be used with Simulink

• Swapping between different implementations of the same function

18-6

19

Code Generation for
MATLAB Structures

• “Structure Definition for Code Generation” on page 19-2

• “Structure Operations Allowed for Code Generation” on page 19-3

• “Define Scalar Structures for Code Generation” on page 19-4

• “Define Arrays of Structures for Code Generation” on page 19-7

• “Make Structures Persistent” on page 19-9

• “Index Substructures and Fields” on page 19-10

• “Assign Values to Structures and Fields” on page 19-12

• “Pass Large Structures as Input Parameters” on page 19-13

19 Code Generation for MATLAB Structures

Structure Definition for Code Generation
To generate efficient standalone code for structures, you must define and use
structures differently than you normally would when running your code in
the MATLAB environment:

What’s Different More Information

Use a restricted set of operations. “Structure Operations Allowed for
Code Generation” on page 19-3

Observe restrictions on properties
and values of scalar structures.

“Define Scalar Structures for Code
Generation” on page 19-4

Make structures uniform in arrays. “Define Arrays of Structures for
Code Generation” on page 19-7

Reference structure fields
individually during indexing.

“Index Substructures and Fields” on
page 19-10

Avoid type mismatch when assigning
values to structures and fields.

“Assign Values to Structures and
Fields” on page 19-12

What’s Different More Information

Use a restricted set of operations. “Structure Operations Allowed for
Code Generation” on page 19-3

Observe restrictions on properties
and values of scalar structures.

“Define Scalar Structures for Code
Generation” on page 19-4

Make structures uniform in arrays. “Define Arrays of Structures for
Code Generation” on page 19-7

Reference structure fields
individually during indexing.

“Index Substructures and Fields”

Avoid type mismatch when assigning
values to structures and fields.

“Assign Values to Structures and
Fields”

19-2

Structure Operations Allowed for Code Generation

Structure Operations Allowed for Code Generation
To generate efficient standalone code for MATLAB structures, you are
restricted to the following operations:

• Define structures as local and persistent variables by assignment and
using the struct function

• Index structure fields using dot notation

• Define primary function inputs as structures

• Pass structures to local functions

19-3

19 Code Generation for MATLAB Structures

Define Scalar Structures for Code Generation

In this section...

“Restrictions When Using struct” on page 19-4

“Restrictions When Defining Scalar Structures by Assignment” on page 19-4

“Adding Fields in Consistent Order on Each Control Flow Path” on page
19-4

“Restriction on Adding New Fields After First Use” on page 19-5

Restrictions When Using struct
When you use the struct function to create scalar structures for code
generation, the following restrictions apply:

• Field arguments must be scalar values.

• You cannot create structures of cell arrays.

Restrictions When Defining Scalar Structures by
Assignment
When you define a scalar structure by assigning a variable to a preexisting
structure, you do not need to define the variable before the assignment.
However, if you already defined that variable, it must have the same class,
size, and complexity as the structure you assign to it. In the following
example, p is defined as a structure that has the same properties as the
predefined structure S:

...
S = struct('a', 0, 'b', 1, 'c', 2);
p = S;
...

Adding Fields in Consistent Order on Each Control
Flow Path
When you create a structure, you must add fields in the same order on each
control flow path. For example, the following code generates a compiler

19-4

Define Scalar Structures for Code Generation

error because it adds the fields of structure x in a different order in each
if statement clause:

function y = fcn(u) %#codegen
if u > 0

x.a = 10;
x.b = 20;

else
x.b = 30; % Generates an error (on variable x)
x.a = 40;

end
y = x.a + x.b;

In this example, the assignment to x.a comes before x.b in the first if
statement clause, but the assignments appear in reverse order in the else
clause. Here is the corrected code:

function y = fcn(u) %#codegen
if u > 0

x.a = 10;
x.b = 20;

else
x.a = 40;
x.b = 30;

end
y = x.a + x.b;

Restriction on Adding New Fields After First Use
You cannot add fields to a structure after you perform any of the following
operations on the structure:

• Reading from the structure

• Indexing into the structure array

• Passing the structure to a function

For example, consider this code:

...
x.c = 10; % Defines structure and creates field c

19-5

19 Code Generation for MATLAB Structures

y = x; % Reads from structure
x.d = 20; % Generates an error
...

In this example, the attempt to add a new field d after reading from structure
x generates an error.

This restriction extends across the structure hierarchy. For example, you
cannot add a field to a structure after operating on one of its fields or nested
structures, as in this example:

function y = fcn(u) %#codegen

x.c = 10;
y = x.c;
x.d = 20; % Generates an error

In this example, the attempt to add a new field d to structure x after reading
from the structure’s field c generates an error.

19-6

Define Arrays of Structures for Code Generation

Define Arrays of Structures for Code Generation

In this section...

“Ensuring Consistency of Fields” on page 19-7

“Using repmat to Define an Array of Structures with Consistent Field
Properties” on page 19-7

“Defining an Array of Structures Using Concatenation” on page 19-8

Ensuring Consistency of Fields
When you create an array of MATLAB structures with the intent of
generating code, you must be sure that each structure field in the array has
the same size, type, and complexity.

Using repmat to Define an Array of Structures with
Consistent Field Properties
You can create an array of structures from a scalar structure by using the
MATLAB repmat function, which replicates and tiles an existing scalar
structure:

1 Create a scalar structure, as described in “Define Scalar Structures for
Code Generation” on page 19-4.

2 Call repmat, passing the scalar structure and the dimensions of the array.

3 Assign values to each structure using standard array indexing and
structure dot notation.

For example, the following code creates X, a 1-by-3 array of scalar structures.
Each element of the array is defined by the structure s, which has two fields,
a and b:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,3);
X(1).a = 1;

19-7

19 Code Generation for MATLAB Structures

X(2).a = 2;
X(3).a = 3;
X(1).b = 4;
X(2).b = 5;
X(3).b = 6;
...

Defining an Array of Structures Using Concatenation
To create a small array of structures, you can use the concatenation operator,
square brackets ([]), to join one or more structures into an array (see
“Concatenating Matrices”). For code generation, all the structures that you
concatenate must have the same size, class, and complexity.

For example, the following code uses concatenation and a local function to
create the elements of a 1-by-3 structure array:

...
W = [sab(1,2) sab(2,3) sab(4,5)];

function s = sab(a,b)
s.a = a;
s.b = b;

...

19-8

Make Structures Persistent

Make Structures Persistent
To make structures persist, you define them to be persistent variables and
initialize them with the isempty statement, as described in “Define and
Initialize Persistent Variables” on page 14-10.

For example, the following function defines structure X to be persistent and
initializes its fields a and b:

function f(u) %#codegen
persistent X

if isempty(X)
X.a = 1;
X.b = 2;

end

19-9

19 Code Generation for MATLAB Structures

Index Substructures and Fields
Use these guidelines when indexing substructures and fields for code
generation:

Reference substructure field values individually using dot notation

For example, the following MATLAB code uses dot notation to index fields
and substructures:

...
substruct1.a1 = 15.2;
substruct1.a2 = int8([1 2;3 4]);

mystruct = struct('ele1',20.5,'ele2',single(100),
'ele3',substruct1);

substruct2 = mystruct;
substruct2.ele3.a2 = 2*(substruct1.a2);
...

The generated code indexes elements of the structures in this example by
resolving symbols as follows:

Dot Notation Symbol Resolution

substruct1.a1 Field a1 of local structure substruct1

substruct2.ele3.a1 Value of field a1 of field ele3, a substructure of local structure
substruct2

substruct2.ele3.a2(1,1) Value in row 1, column 1 of field a2 of field ele3, a substructure
of local structure substruct2

Reference field values individually in structure arrays

To reference the value of a field in a structure array, you must index into the
array to the structure of interest and then reference that structure’s field
individually using dot notation, as in this example:

...

19-10

Index Substructures and Fields

y = X(1).a % Extracts the value of field a
% of the first structure in array X

...

To reference all the values of a particular field for each structure in an array,
use this notation in a for loop, as in this example:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,5);
for i = 1:5

X(i).a = i;
X(i).b = i+1;

end

This example uses the repmat function to define an array of structures, each
with two fields a and b as defined by s. See “Define Arrays of Structures for
Code Generation” on page 19-7 for more information.

Do not reference fields dynamically

You cannot reference fields in a structure by using dynamic names, which
express the field as a variable expression that MATLAB evaluates at run time
(see “Generate Field Names from Variables”).

19-11

19 Code Generation for MATLAB Structures

Assign Values to Structures and Fields
Use these guidelines when assigning values to a structure, substructure,
or field for code generation:

Field properties must be consistent across structure-to-structure
assignments

If: Then:

Assigning one structure to another
structure.

Define each structure with the same
number, type, and size of fields.

Assigning one structure to a
substructure of a different structure
and vice versa.

Define the structure with the same
number, type, and size of fields as
the substructure.

Assigning an element of one
structure to an element of another
structure.

The elements must have the same
type and size.

Do not use field values as constants

The values stored in the fields of a structure are not treated as constant values
in generated code. Therefore, you cannot use field values to set the size or
class of other data. For example, the following code generates a compiler error:

...
Y.a = 3;
X = zeros(Y.a); % Generates an error

In this example, even though you set field a of structure Y to the value 3, Y.a
is not a constant in generated code and, therefore, it is not a valid argument
to pass to the function zeros.

Do not assign mxArrays to structures

You cannot assign mxArrays to structure elements; convert mxArrays to
known types before code generation (see “Working with mxArrays” on page
10-17).

19-12

Pass Large Structures as Input Parameters

Pass Large Structures as Input Parameters
If you generate a MEX function for a MATLAB function that takes a large
structure as an input parameter, for example, a structure containing fields
that are matrices, the MEX function might fail to load. This load failure
occurs because, when you generate a MEX function from a MATLAB function
that has input parameters, the code generation software allocates memory for
these input parameters on the stack. To avoid this issue, pass the structure
by reference to the MATLAB function. For example, if the original function
signature is:

y = foo(a, S)

where S is the structure input, rewrite the function to:

[y, S] = foo(a, S)

19-13

19 Code Generation for MATLAB Structures

19-14

20

Functions Supported for
Code Generation

• “Functions Supported for Code Generation — Alphabetical List” on page
20-2

• “Functions Supported for Code Generation — Categorical List” on page
20-75

20 Functions Supported for Code Generation

Functions Supported for Code Generation — Alphabetical
List

You can generate efficient C/C++ code for a subset of MATLAB and toolbox
functions that you call from MATLAB code. In generated code, each supported
function has the same name, arguments, and functionality as its MATLAB or
toolbox counterparts. However, to generate code for these functions, you must
adhere to certain limitations when calling them from your MATLAB source
code. These limitations appear in the list below.

To find supported functions by MATLAB category or toolbox, see “Functions
Supported for Code Generation — Categorical List”“Functions Supported for
Code Generation — Categorical List” on page 20-75“Functions Supported for
Code Generation — Categorical List”.

Note For more information on code generation for fixed-point algorithms,
refer to “Code Acceleration and Code Generation from MATLAB” on page 8-3.

Function Product Remarks/Limitations

abs MATLAB —

abs Fixed-Point
Toolbox

—

accumneg Fixed-Point
Toolbox

—

accumpos Fixed-Point
Toolbox

—

acos MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

acosd MATLAB —

20-2

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

acosh MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

acot MATLAB —

acotd MATLAB —

acoth MATLAB —

acsc MATLAB —

acscd MATLAB —

acsch MATLAB —

add Fixed-Point
Toolbox

—

all MATLAB —

all Fixed-Point
Toolbox

—

and MATLAB —

angle MATLAB —

any MATLAB —

any Fixed-Point
Toolbox

—

asec MATLAB —

asecd MATLAB —

asech MATLAB —

20-3

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

asin MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

asind MATLAB —

asinh MATLAB —

assert MATLAB • Generates specified error messages at compile
time only if all input arguments are constants
or depend on constants. Otherwise, generates
specified error messages at run time.

atan MATLAB —

atan2 MATLAB —

atan2 Fixed-Point
Toolbox

—

atan2d MATLAB —

atand MATLAB —

atanh MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

20-4

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

barthannwin Signal Processing
Toolbox™

• Does not support variable-size inputs.

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

bartlett Signal Processing
Toolbox

• Does not support variable-size inputs.

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

20-5

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

• Requires DSP System Toolbox license to
generate code.

besselap Signal Processing
Toolbox

• Does not support variable-size inputs.

• Filter order must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

beta MATLAB —

betainc MATLAB —

betaln MATLAB —

bi2de Communications
System Toolbox™

• Requires a Communications System Toolbox
license to generate code.

bin2dec MATLAB • Does not match MATLAB when the input is
empty.

bitand MATLAB • Does not support floating-point inputs. The
arguments must belong to an unsigned
integer class.

bitand Fixed-Point
Toolbox

• Not supported for slope-bias scaled fi objects.

20-6

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

bitandreduce Fixed-Point
Toolbox

—

bitcmp MATLAB • Does not support floating-point input for the
first argument. The first argument must
belong to an unsigned integer class.

bitcmp Fixed-Point
Toolbox

—

bitconcat Fixed-Point
Toolbox

—

bitget MATLAB • Does not support floating-point input for the
first argument. The first argument must
belong to an unsigned integer class.

bitget Fixed-Point
Toolbox

—

bitmax MATLAB —

bitor MATLAB • Does not support floating-point inputs. The
arguments must belong to an unsigned
integer class.

bitor Fixed-Point
Toolbox

• Not supported for slope-bias scaled fi objects.

bitorreduce Fixed-Point
Toolbox

—

bitreplicate Fixed-Point
Toolbox

—

bitrevorder Signal Processing
Toolbox

• Does not support variable-size inputs.

• Computation performed at run time.

• Requires DSP System Toolbox license to
generate code.

20-7

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

bitrol Fixed-Point
Toolbox

—

bitror Fixed-Point
Toolbox

—

bitset MATLAB • Does not support floating-point input for the
first argument. The first argument must
belong to an unsigned integer class.

bitset Fixed-Point
Toolbox

—

bitshift MATLAB • Does not support floating-point input for the
first argument. The first argument must
belong to an unsigned integer class.

bitshift Fixed-Point
Toolbox

—

bitsliceget Fixed-Point
Toolbox

—

bitsll Fixed-Point
Toolbox

—

bitsra Fixed-Point
Toolbox

—

bitsrl Fixed-Point
Toolbox

—

bitxor MATLAB • Does not support floating-point inputs. The
arguments must belong to an unsigned
integer class.

bitxor Fixed-Point
Toolbox

• Not supported for slope-bias scaled fi objects.

bitxorreduce Fixed-Point
Toolbox

—

20-8

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

blackman Signal Processing
Toolbox

• Does not support variable-size inputs.

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

blackmanharris Signal Processing
Toolbox

• Does not support variable-size inputs.

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

20-9

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

• Requires DSP System Toolbox license to
generate code.

blanks MATLAB —

blkdiag MATLAB —

bohmanwin Signal Processing
Toolbox

• Does not support variable-size inputs.

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

bsxfun MATLAB —

20-10

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

buttap Signal Processing
Toolbox

• Does not support variable-size inputs.

• Filter order must be a constant. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

butter Signal Processing
Toolbox

• Does not support variable-size inputs.

• Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

20-11

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

• Requires DSP System Toolbox license to
generate code.

buttord Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

bwlookup Image Processing
Toolbox™

• For best results, specify an input image of
class logical.

bwmorph Image Processing
Toolbox

• The text string specifying the operation must
be a constant and, for best results, specify an
input image of class logical.

cart2pol MATLAB —

cart2sph MATLAB —

cast MATLAB —

cat MATLAB —

ceil MATLAB —

20-12

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

ceil Fixed-Point
Toolbox

—

cfirpm Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

char MATLAB —

cheb1ap Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

20-13

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

cheb1ord Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

20-14

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

cheb2ap Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

cheb2ord Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

20-15

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

• Requires DSP System Toolbox license to
generate code.

chebwin Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

cheby1 Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

20-16

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

cheby2 Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

20-17

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

chol MATLAB • When there are two output arguments, either
make the input matrix variable-size in both
dimensions, or, if the input matrix must
be fixed size, copy the input matrix to a
variable-size matrix before calling chol.

coder.varsize('B');
B = A;
[B,p] = chol(B);

circshift MATLAB —

class MATLAB —

compan MATLAB —

complex MATLAB —

complex Fixed-Point
Toolbox

—

cond MATLAB —

conj MATLAB —

conj Fixed-Point
Toolbox

—

conv MATLAB —

conv Fixed-Point
Toolbox

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

- In generated code, the output for
variable-sized signals is always computed
using the SumMode property of the
governing fimath.

20-18

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

- In MATLAB, the output for variable-sized
signals is computed using the SumMode
property of the governing fimath when
both inputs are nonscalar. However, if
either input is a scalar, MATLAB computes
the output using the ProductMode of the
governing fimath.

conv2 MATLAB —

convergent Fixed-Point
Toolbox

—

convn MATLAB —

cordicabs Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordicangle Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordicatan2 Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordiccart2pol Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordiccexp Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordiccos Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordicpol2cart Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordicrotate Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordicsin Fixed-Point
Toolbox

• Variable-size signals are not supported.

cordicsincos Fixed-Point
Toolbox

• Variable-size signals are not supported.

20-19

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

corrcoef MATLAB • Row-vector input is only supported when the
first two inputs are vectors and nonscalar.

cos MATLAB —

cos Fixed-Point
Toolbox

—

cosd MATLAB —

cosh MATLAB —

cot MATLAB —

cotd MATLAB —

coth MATLAB —

cov MATLAB —

cross MATLAB • If supplied, dim must be a constant.

csc MATLAB —

cscd MATLAB —

csch MATLAB —

ctranspose MATLAB —

ctranspose Fixed-Point
Toolbox

—

cumprod MATLAB • Logical inputs are not supported. Cast input
to double first.

cumsum MATLAB • Logical inputs are not supported. Cast input
to double first.

cumtrapz MATLAB —

20-20

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

dct Signal Processing
Toolbox

• Does not support variable-size inputs.

• Requires DSP System Toolbox license to
generate code.

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

de2bi Communications
System Toolbox

• Requires a Communications System Toolbox
license to generate code.

deal MATLAB —

deblank MATLAB • Supports only inputs from the char class.

• Input values must be in the range 0-127.

20-21

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

dec2bin MATLAB • If input d is double, d must be less than 2^52.

• If input d is single, d must be less than 2^23.

• Unless you specify input n to be constant and
n is large enough that the output has a fixed
number of columns regardless of the input
values, this function requires variable-sizing
support. Without variable-sizing support, n
must be at least 52 for double, 23 for single,
16 for char, 32 for int32, 16 for int16, and
so on.

dec2hex MATLAB • If input d is double, d must be less than 2^52.

• If input d is single, d must be less than 2^23.

• Unless you specify input n to be constant and
n is large enough that the output has a fixed
number of columns regardless of the input
values, this function requires variable-sizing
support. Without variable-sizing support, n
must be at least 13 for double, 6 for single, 4
for char, 8 for int32, 4 for int16, and so on.

deconv MATLAB —

del2 MATLAB —

det MATLAB —

detrend MATLAB • If supplied and not empty, the input argument
bp must satisfy the following requirements:

- Be real

- Be sorted in ascending order

- Restrict elements to integers in the interval
[1, n-2], where n is the number of
elements in a column of input argument X
, or the number of elements in X when X is
a row vector

20-22

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

- Contain all unique values

diag MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

diag Fixed-Point
Toolbox

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

diff MATLAB • If supplied, the arguments representing
the number of times to apply diff and
the dimension along which to calculate the
difference must be constants.

divide Fixed-Point
Toolbox

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• Complex and imaginary divisors are not
supported.

• The syntax T.divide(a,b) is not supported.

dot MATLAB —

double MATLAB —

double Fixed-Point
Toolbox

—

downsample Signal Processing
Toolbox

• Does not support variable-size inputs.

20-23

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

dpss Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

eig MATLAB • QZ algorithm used in all cases, whereas
MATLAB might use different algorithms
for different inputs. Consequently, V might
represent a different basis of eigenvectors,
and the eigenvalues in D might not be in the
same order as in MATLAB.

• With one input, [V,D] = eig(A), the results
will be similar to those obtained using [V,D]
= eig(A,eye(size(A)),'qz') in MATLAB,
except that for code generation, the columns
of V are normalized.

• Options 'balance', 'nobalance' are not
supported for the standard eigenvalue
problem, and 'chol' is not supported for the
symmetric generalized eigenvalue problem.

• Outputs are always of complex type.

20-24

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

ellip Signal Processing
Toolbox

• Does not support variable-size inputs.

• Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

ellipap Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

20-25

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

• Requires DSP System Toolbox license to
generate code.

ellipke MATLAB —

ellipord Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

end Fixed-Point
Toolbox

—

epipolarLine Computer Vision
System Toolbox™

—

eps MATLAB —

eps Fixed-Point
Toolbox

• Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi
single and fi double signals.

eq MATLAB —

20-26

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

eq Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

erf MATLAB —

erfc MATLAB —

erfcinv MATLAB —

erfcx MATLAB —

erfinv MATLAB —

error MATLAB • This is an extrinsic call.

estimate
Fundamental
Matrix

Computer Vision
System Toolbox

—

estimateUncalibratedRectificationComputer Vision
System Toolbox

—

exp MATLAB —

expint MATLAB —

expm MATLAB —

expm1 MATLAB —

extractFeatures Computer Vision
System Toolbox

—

eye MATLAB • Dimensions must be real, nonnegative,
integers.

factor MATLAB • For double precision input, the maximum
value of A is 2^32-1.

• For single precision input, the maximum
value of A is 2^24-1.

factorial MATLAB —

false MATLAB • Dimensions must be real, nonnegative,
integers.

fft MATLAB • Length of input vector must be a power of 2.

20-27

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

fft2 MATLAB • Length of input matrix dimensions must each
be a power of 2.

fftn MATLAB • Length of input matrix dimensions must each
be a power of 2.

fftshift MATLAB —

fi Fixed-Point
Toolbox

• Use to create a fixed-point constant or
variable.

• The default constructor syntax without any
input arguments is not supported.

• The syntax
fi('PropertyName',PropertyValue...)
is not supported. To use property
name/property value pairs, you must first
specify the value v of the fi object as in
fi(v,'PropertyName',PropertyValue...).

• Works for all input values when complete
numerictype information of the fi object is
provided.

• Works only for constant input values (value of
input must be known at compile time) when
complete numerictype information of the fi
object is not specified.

• numerictype object information must be
available for non-fixed-point Simulink inputs.

filter MATLAB —

filter Fixed-Point
Toolbox

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

filter2 MATLAB —

20-28

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

filtfilt Signal Processing
Toolbox

• Does not support variable-size inputs.

• Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

fimath Fixed-Point
Toolbox

• Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned
the fimath object defined in the MATLAB
Function dialog in the Model Explorer.

• Use to create fimath objects in generated
code.

20-29

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

find MATLAB • Issues an error if a variable-sized input
becomes a row vector at run time.

Note This limitation does not apply when
the input is scalar or a variable-length row
vector.

• For variable-sized inputs, the shape of empty
outputs, 0-by-0, 0-by-1, or 1-by-0, depends on
the upper bounds of the size of the input. The
output might not match MATLAB when the
input array is a scalar or [] at run time. If
the input is a variable-length row vector, the
size of an empty output is 1-by-0, otherwise it
is 0-by-1.

fir1 Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

20-30

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

fir2 Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

fircls Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

20-31

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

• Requires DSP System Toolbox license to
generate code.

fircls1 Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

firls Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

20-32

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

firpm Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

20-33

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

firpmord Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

firrcos Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

20-34

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

• Requires DSP System Toolbox license to
generate code.

fix MATLAB —

fix Fixed-Point
Toolbox

—

fixed.Quantizer Fixed-Point
Toolbox

—

flattopwin Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

flintmax MATLAB —

flipdim MATLAB —

fliplr MATLAB —

flipud MATLAB —

floor MATLAB —

20-35

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

floor Fixed-Point
Toolbox

—

freqspace MATLAB —

freqz Signal Processing
Toolbox

• Does not support variable-size inputs.

• freqz with no output arguments produces a
plot only when the function call terminates
in a semicolon. See “freqz With No Output
Arguments”.

• Requires DSP System Toolbox license to
generate code.

fspecial Image Processing
Toolbox

All inputs must be constants at compilation
time. Expressions or variables are allowed if
their values do not change.

full MATLAB —

fzero MATLAB • The first argument must be a function handle.
Does not support structure, inline function, or
string inputs for the first argument.

• Supports up to three output arguments. Does
not support the fourth output argument (the
output structure).

• Only supports the TolX and FunValCheck
fields of an options input structure. Ignores
all other options in an options input
structure. You cannot use the optimset
function to create the options structure.
Create this structure directly, for example,

opt.TolX = tol;
opt.FunValCheck = 'on';

The input structure field names must match
exactly.

gamma MATLAB —

20-36

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

gammainc MATLAB —

gammaln MATLAB —

gaussfir Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

gausswin Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

20-37

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

gcd MATLAB —

ge MATLAB —

ge Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

get Fixed-Point
Toolbox

• The syntax structure = get(o) is not
supported.

getlsb Fixed-Point
Toolbox

—

getmsb Fixed-Point
Toolbox

—

gradient MATLAB —

gt MATLAB —

gt Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

hadamard MATLAB —

20-38

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

hamming Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

hankel MATLAB —

hann Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see

20-39

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

hdlram Fixed-Point
Toolbox

—

hex2dec MATLAB —

hex2num MATLAB • For n = hex2num(S), size(S,2) <=
length(num2hex(0))

hilb MATLAB —

hist MATLAB • Histogram bar plotting not supported; call
with at least one output argument.

• If supplied, the second argument x must be a
scalar constant.

• Inputs must be real.

histc MATLAB • The output of a variable-size array that
becomes a column vector at run time is a
column-vector, not a row-vector.

horzcat Fixed-Point
Toolbox

—

hypot MATLAB —

idct Signal Processing
Toolbox

• Does not support variable-size inputs.

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see

20-40

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

idivide MATLAB • For efficient generated code, MATLAB rules
for divide by zero are supported only for the
'round' option.

ifft MATLAB • Length of input vector must be a power of 2.

• Output of ifft block is always complex.

• Does not support the 'symmetric' option.

ifft2 MATLAB • Length of input matrix dimensions must each
be a power of 2.

• Does not support the 'symmetric' option.

ifftn MATLAB • Length of input matrix dimensions must each
be a power of 2.

• Does not support the 'symmetric' option.

ifftshift MATLAB —

imag MATLAB —

imag Fixed-Point
Toolbox

—

ind2sub MATLAB • The first argument should be a valid size
vector. Size vectors for arrays with more than
intmax elements are not supported.

inf MATLAB • Dimensions must be real, nonnegative,
integers.

20-41

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

int8, int16, int32 MATLAB —

int8, int16, int32 Fixed-Point
Toolbox

—

integralImage Computer Vision
System Toolbox

—

interp1 MATLAB • Supports only linear and nearest
interpolation methods.

• Does not handle evenly spaced X indices
separately.

• X must be strictly monotonically increasing
or strictly monotonically decreasing; does not
reorder indices.

interp2 MATLAB • Supports only 5 <= nargin <= 7.

• XI and YI must be the same size.

• Supports only 'linear' and 'nearest'
methods.

• For best performance, supply X and Y as
vectors.

• When the X or Y inputs are not vectors,
interp2 references only the first row of X and
first column of Y. Supports "plaid" input for X
and Y but does not verify that the input data
is "plaid".

• X and Y must contain monotonically
increasing values. If your application provides
monotonically decreasing values, first use
fliplr and flipud to change X, Y, and Z to
monotonically increasing form before calling
interp2.

20-42

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

intersect MATLAB • When rows is not specified:

- Inputs must be row vectors.

- If a vector is variable-sized, its first
dimension must have a fixed length of 1.

- The input [] is not supported. Use a 1-by-0
input, for example zeros(1,0), to represent
the empty set.

- Empty outputs are always row vectors,
1-by-0, never 0-by-0.

• When rows is specified, outputs ia and ib are
always column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output c is 0-by-0.

• Inputs must already be sorted in ascending
order. The first output is always sorted in
ascending order.

• Complex inputs must be single or double.

intfilt Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

20-43

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

• Requires DSP System Toolbox license to
generate code.

intmax MATLAB —

intmin MATLAB —

inv MATLAB Singular matrix inputs can produce nonfinite
values that differ from MATLAB results.

invhilb MATLAB —

ipermute MATLAB —

isa MATLAB —

iscell MATLAB —

ischar MATLAB —

iscolumn MATLAB —

iscolumn Fixed-Point
Toolbox

—

isdeployed MATLAB
Compiler

• Returns true and false as appropriate for
MEX and SIM targets

• Returns false for all other targets

isempty MATLAB —

isempty Fixed-Point
Toolbox

—

isEpipoleInImage Computer Vision
System Toolbox

—

isequal MATLAB —

isequal Fixed-Point
Toolbox

—

isequaln MATLAB —

isfi Fixed-Point
Toolbox

—

20-44

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

isfield MATLAB • Does not support cell input for second
argument

isfimath Fixed-Point
Toolbox

—

isfimathlocal Fixed-Point
Toolbox

—

isfinite MATLAB —

isfinite Fixed-Point
Toolbox

—

isfloat MATLAB —

isinf MATLAB —

isinf Fixed-Point
Toolbox

—

isinteger MATLAB —

isletter MATLAB • Input values from the char class must be in
the range 0-127

islogical MATLAB —

ismatrix MATLAB —

ismcc MATLAB
Compiler

• Returns true and false as appropriate for
MEX and SIM targets.

• Returns false for all other targets.

ismember MATLAB • The second input, S, must be sorted in
ascending order.

• Complex inputs must be single or double.

isnan MATLAB —

isnan Fixed-Point
Toolbox

—

isnumeric MATLAB —

20-45

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

isnumeric Fixed-Point
Toolbox

—

isnumerictype Fixed-Point
Toolbox

—

isprime MATLAB • For double precision input, the maximum
value of A is 2^32-1.

• For single precision input, the maximum
value of A is 2^24-1.

isreal MATLAB —

isreal Fixed-Point
Toolbox

—

isrow MATLAB —

isrow Fixed-Point
Toolbox

—

isscalar MATLAB —

isscalar Fixed-Point
Toolbox

—

issigned Fixed-Point
Toolbox

—

issorted MATLAB —

isspace MATLAB • Input values from the char class must be in
the range 0-127

issparse MATLAB —

isstrprop MATLAB
• Supports only inputs from char and integer
classes.

• Input values must be in the range 0-127.

isstruct MATLAB —

20-46

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

istrellis Communications
System Toolbox

• Requires a Communications System Toolbox
license to generate code.

isvector MATLAB —

isvector Fixed-Point
Toolbox

—

kaiser Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

kaiserord Signal Processing
Toolbox

• Does not support variable-size inputs.

• Computation performed at run time.

• Requires DSP System Toolbox license to
generate code.

kron MATLAB —

20-47

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

label2rgb Image Processing
Toolbox

Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the
label matrix, L, and the colormap matrix, map.

• map must be an n-by-3, double, colormap
matrix. You cannot use a string containing
the name of a MATLAB colormap function or
a function handle of a colormap function.

• If you set the boundary color zerocolor to the
same color as one of the regions, label2rgb
will not issue a warning.

• If you supply a value for order, it must be
'noshuffle'.

lcm MATLAB —

ldivide MATLAB —

le MATLAB —

le Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

length MATLAB —

length Fixed-Point
Toolbox

—

20-48

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

levinson Signal Processing
Toolbox

• Does not support variable-size inputs.

• If specified, the order of recursion must be
a constant. Expressions or variables are
allowed if their values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

lineToBorderPoints Computer Vision
System Toolbox

—

linsolve MATLAB • The option structure must be a constant.

• Supports only a scalar option structure input.
It does not support arrays of option structures.

• Only optimizes these cases:

- UT

- LT

- UHESS = true (the TRANSA can be either
true or false)

- SYM = true and POSDEF = true

All other options are equivalent to using
mldivide.

20-49

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

linspace MATLAB —

log MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

log2 MATLAB —

log10 MATLAB —

log1p MATLAB —

logical MATLAB —

logical Fixed-Point
Toolbox

—

logspace MATLAB —

lower MATLAB
• Supports only char inputs.

• Input values must be in the range 0-127.

lowerbound Fixed-Point
Toolbox

—

lsb Fixed-Point
Toolbox

• Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi
single and double signals.

lt MATLAB —

lt Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

lu MATLAB —

magic MATLAB —

matchFeatures Computer Vision
System Toolbox

—

20-50

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

max MATLAB —

max Fixed-Point
Toolbox

—

maxflat Signal Processing
Toolbox

• Does not support variable-size inputs.

• Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

mean MATLAB —

mean Fixed-Point
Toolbox

—

median MATLAB —

median Fixed-Point
Toolbox

—

meshgrid MATLAB —

min MATLAB —

min Fixed-Point
Toolbox

—

20-51

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

minus MATLAB —

minus Fixed-Point
Toolbox

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

mldivide MATLAB —

mod MATLAB • Performs all arithmetic in the output class.
Hence, results might not match MATLAB due
to different rounding errors.

mode MATLAB • Does not support third output argument C
(cell array)

mpower MATLAB —

mpower Fixed-Point
Toolbox

• The exponent input, k, must be constant; that
is, its value must be known at compile time.

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

- In generated code, the output for
variable-sized signals is always computed
using the SumMode property of the
governing fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode
property of the governing fimath when
both inputs are nonscalar. However, if
either input is a scalar, MATLAB computes
the output using the ProductMode of the
governing fimath.

20-52

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

mpy Fixed-Point
Toolbox

• When you provide complex inputs to the
mpy function inside a MATLAB Function
block, you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

mrdivide MATLAB —

mrdivide Fixed-Point
Toolbox

—

mtimes MATLAB —

mtimes Fixed-Point
Toolbox

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

- In generated code, the output for
variable-sized signals is always computed
using the SumMode property of the
governing fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode
property of the governing fimath when
both inputs are nonscalar. However, if
either input is a scalar, MATLAB computes
the output using the ProductMode of the
governing fimath.

NaN or nan MATLAB • Dimensions must be real, nonnegative,
integers.

20-53

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

nargchk MATLAB • Output structure does not include stack
information.

Note nargchk will be removed in a future
release.

nargin MATLAB —

nargout MATLAB • For a function with no output arguments,
returns 1 if called without a terminating
semicolon.

Note This behavior also affects extrinsic calls
with no terminating semicolon. nargout is 1 for
the called function in MATLAB.

nargoutchk MATLAB • Output structure does not include stack
information.

nchoosek MATLAB —

ndgrid MATLAB —

ndims MATLAB —

ndims Fixed-Point
Toolbox

—

ne MATLAB —

ne Fixed-Point
Toolbox

• Not supported for fixed-point signals with
different biases.

nearest Fixed-Point
Toolbox

—

nextpow2 MATLAB —

nnz MATLAB —

nonzeros MATLAB —

20-54

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

norm MATLAB —

normest MATLAB —

not MATLAB —

nthroot MATLAB —

null MATLAB • Might return a different basis than MATLAB

• Does not support rational basis option (second
input)

num2hex MATLAB —

numberofelements Fixed-Point
Toolbox

• Returns the number of elements of fi objects
in the generated code (works the same as
numel for fi objects in generated code).

numel MATLAB • Returns the number of elements of fi objects
in the generated code, rather than always
returning 1.

numerictype Fixed-Point
Toolbox

• Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned a
numerictype object that is populated with the
signal’s data type and scaling information.

• Returns the data type when the input is a
non-fixed-point signal.

• Use to create numerictype objects in the
generated code.

20-55

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

nuttallwin Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

ones MATLAB • Dimensions must be real, nonnegative,
integers.

or MATLAB —

orth MATLAB • Might return a different basis than MATLAB

parzenwin Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

20-56

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

pascal MATLAB —

permute MATLAB —

permute Fixed-Point
Toolbox

—

pi MATLAB —

pinv MATLAB —

planerot MATLAB —

plus MATLAB —

plus Fixed-Point
Toolbox

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

pol2cart MATLAB —

poly MATLAB • Does not discard nonfinite input values

• Complex input always produces complex
output

poly2trellis Communications
System Toolbox

• Requires a Communications System Toolbox
license to generate code.

polyfit MATLAB —

polyval MATLAB —

pow2 Fixed-Point
Toolbox

—

20-57

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

power MATLAB • Generates an error during simulation and
returns NaN in generated code when both X
and Y are real, but power(X,Y) is complex.
To get the complex result, make the input
value X complex by passing in complex(X).
For example, power(complex(X),Y).

• Generates an error during simulation and
returns NaN in generated code when both X
and Y are real, but X .^ Y is complex. To get
the complex result, make the input value X
complex by using complex(X). For example,
complex(X).^Y.

power Fixed-Point
Toolbox

• The exponent input, k, must be constant; that
is, its value must be known at compile time.

primes MATLAB —

prod MATLAB —

qr MATLAB —

quad2d MATLAB
• Generates a warning if the size of the internal
storage arrays is not large enough. If a
warning occurs, a possible workaround is to
divide the region of integration into pieces
and sum the integrals over each piece.

quadgk MATLAB —

quantize Fixed-Point
Toolbox

—

quatconj Aerospace
Toolbox

—

quatdivide Aerospace
Toolbox

—

quatinv Aerospace
Toolbox

—

20-58

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

quatmod Aerospace
Toolbox

—

quatmultiply Aerospace
Toolbox

—

quatnorm Aerospace
Toolbox

—

quatnormalize Aerospace
Toolbox

—

rand MATLAB —

randi MATLAB —

randn MATLAB —

randperm MATLAB —

range Fixed-Point
Toolbox

—

rank MATLAB —

rcond MATLAB —

rcosfir Communications
System Toolbox

• Requires a Communications System Toolbox
license to generate code.

rdivide MATLAB —

rdivide Fixed-Point
Toolbox

—

real MATLAB —

real Fixed-Point
Toolbox

—

reallog MATLAB —

realmax MATLAB —

20-59

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

realmax Fixed-Point
Toolbox

—

realmin MATLAB —

realmin Fixed-Point
Toolbox

—

realpow MATLAB —

realsqrt MATLAB —

rectwin Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

reinterpretcast Fixed-Point
Toolbox

—

rem MATLAB • Performs all arithmetic in the output class.
Hence, results might not match MATLAB due
to different rounding errors.

removefimath Fixed-Point
Toolbox

—

20-60

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

repmat MATLAB —

repmat Fixed-Point
Toolbox

—

resample Signal Processing
Toolbox

• Does not support variable-size inputs.

• The upsampling and downsampling factors
must be specified as constants. Expressions
or variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

rescale Fixed-Point
Toolbox

—

reshape MATLAB —

reshape Fixed-Point
Toolbox

—

20-61

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

rng MATLAB • For library and executable code generation
targets, and for MEX targets when extrinsic
calls are disabled, supports only the
'default' input and these generator inputs:

- 'twister'

- 'v4'

- 'v5normal'

For these targets, the output of s=rng in the
generated code differs from the MATLAB
output. You cannot return the output of
s=rng from the generated code and pass it to
rng in MATLAB.

• For MEX targets, if extrinsic calls are
enabled, you cannot access the data in the
structure returned by rng.

roots MATLAB • Output is always variable size

• Output is always complex

• Roots may not be in the same order as
MATLAB

• Roots of poorly conditioned polynomials may
not match MATLAB

rosser MATLAB —

rot90 MATLAB —

round MATLAB —

round Fixed-Point
Toolbox

—

rsf2csf MATLAB —

schur MATLAB Might sometimes return a different Schur
decomposition in generated code than in
MATLAB.

20-62

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

sec MATLAB —

secd MATLAB —

sech MATLAB —

setdiff MATLAB • When rows is not specified:

- Inputs must be row vectors.

- If a vector is variable-sized, its first
dimension must have a fixed length of 1.

- The input [] is not supported. Use a 1-by-0
input, for example, zeros(1,0) to represent
the empty set.

- Empty outputs are always row vectors,
1-by-0, never 0-by-0.

• When rows is specified, output i is always
a column vector. If i is empty, it is 0-by-1,
never 0-by-0, even if the output c is 0-by-0.

• Inputs must already be sorted in ascending
order. The first output is always sorted in
ascending order.

• Complex inputs must be single or double.

setfimath Fixed-Point
Toolbox

—

20-63

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

setxor MATLAB • When rows is not specified:

- Inputs must be row vectors.

- If a vector is variable-sized, its first
dimension must have a fixed length of 1.

- The input [] is not supported. Use a 1-by-0
input, such as zeros(1,0), to represent the
empty set.

- Empty outputs are always row vectors,
1-by-0, never 0-by-0.

• When rows is specified, outputs ia and ib are
always column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output c is 0-by-0.

• Inputs must already be sorted in ascending
order. The first output is always sorted in
ascending order.

• Complex inputs must be single or double.

sfi Fixed-Point
Toolbox

—

sgolay Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

20-64

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

shiftdim MATLAB Second argument must be a constant.

sign MATLAB —

sign Fixed-Point
Toolbox

—

sin MATLAB —

sin Fixed-Point
Toolbox

—

sind MATLAB —

single MATLAB —

single Fixed-Point
Toolbox

—

sinh MATLAB —

size MATLAB —

size Fixed-Point
Toolbox

—

sort MATLAB —

sort Fixed-Point
Toolbox

—

sortrows MATLAB —

20-65

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

sosfilt Signal Processing
Toolbox • Does not support variable-size inputs.

• Computation performed at run time.

• Requires DSP System Toolbox license to
generate code.

sph2cart MATLAB —

squeeze MATLAB —

sqrt MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

sqrt Fixed-Point
Toolbox

• Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.

sqrtm MATLAB —

std MATLAB —

storedInteger Fixed-Point
Toolbox

—

storedIntegerToDouble Fixed-Point
Toolbox

—

str2func MATLAB • String must be constant/known at compile
time

strcmp MATLAB • Arguments must be computable at compile
time.

strcmpi MATLAB • Input values from the char class must be in
the range 0-127.

strjust MATLAB —

strncmp MATLAB —

20-66

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

strncmpi MATLAB • Input values from the char class must be in
the range 0-127.

strtok MATLAB —

strtrim MATLAB • Supports only inputs from the char class.

• Input values must be in the range 0-127.

struct MATLAB —

structfun MATLAB • Does not support the ErrorHandler option.

• The number of outputs must be less than or
equal to three.

sub Fixed-Point
Toolbox

—

sub2ind MATLAB • The first argument should be a valid size
vector. Size vectors for arrays with more than
intmax elements are not supported.

subsasgn Fixed-Point
Toolbox

—

subspace MATLAB —

subsref Fixed-Point
Toolbox

—

sum MATLAB —

sum Fixed-Point
Toolbox

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

svd MATLAB Uses a different SVD implementation than
MATLAB. As the singular value decomposition
is not unique, left and right singular vectors
might differ from those computed by MATLAB.

20-67

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

swapbytes MATLAB Inheritance of the class of the input to swapbytes
in a MATLAB Function block is supported only
when the class of the input is double. For
non-double inputs, the input port data types
must be specified, not inherited.

tan MATLAB —

tand MATLAB —

tanh MATLAB —

taylorwin Signal Processing
Toolbox

• Does not support variable-size inputs.

• Inputs must be constant

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

times MATLAB —

20-68

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

times Fixed-Point
Toolbox

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• When you provide complex inputs to the
times function inside a MATLAB Function
block, you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

toeplitz MATLAB —

trace MATLAB —

trapz MATLAB —

transpose MATLAB —

transpose Fixed-Point
Toolbox

—

triang Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

20-69

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

• Requires DSP System Toolbox license to
generate code.

tril MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

tril Fixed-Point
Toolbox

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

triu MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

triu Fixed-Point
Toolbox

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

true MATLAB • Dimensions must be real, nonnegative,
integers.

tukeywin Signal Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

20-70

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

typecast MATLAB • Value of string input argument type must be
lower case

• You might receive a size error when you use
typecast with inheritance of input port data
types in MATLAB Function blocks. To avoid
this error, specify the block’s input port data
types explicitly.

ufi Fixed-Point
Toolbox

—

uint8, uint16, uint32 MATLAB —

uint8, uint16, uint32 Fixed-Point
Toolbox

—

uminus MATLAB —

uminus Fixed-Point
Toolbox

—

union MATLAB • When rows is not specified:

- Inputs must be row vectors.

- If a vector is variable-sized, its first
dimension must have a fixed length of 1.

- The input [] is not supported. Use a 1-by-0
input, such as zeros(1,0) to represent the
empty set.

- Empty outputs are always row vectors,
1-by-0, never 0-by-0.

• When rows is specified, outputs ia and ib are
always column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output c is 0-by-0.

• Inputs must already be sorted in ascending
order. The first output is always sorted in
ascending order.

20-71

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

• Complex inputs must be single or double.

unique MATLAB • When rows is not specified:

- The first input must be a row vector.

- If the vector is variable-sized, its first
dimension must have a fixed length of 1.

- The input [] is not supported. Use a 1-by-0
input, such as zeros(1,0), to represent the
empty set.

- Empty outputs are always row vectors,
1-by-0, never 0-by-0.

• When rows is specified, outputs m and n are
always column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output b is 0-by-0.

• Complex inputs must be single or double.

unwrap MATLAB • Row vector input is only supported when the
first two inputs are vectors and nonscalar

• Performs all arithmetic in the output class.
Hence, results might not match MATLAB due
to different rounding errors

upfirdn Signal Processing
Toolbox

• Does not support variable-size inputs.

• Filter coefficients, upsampling factor, and
downsampling factor must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

20-72

Functions Supported for Code Generation — Alphabetical List

Function Product Remarks/Limitations

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code

uplus MATLAB —

uplus Fixed-Point
Toolbox

—

upper MATLAB
• Supports only char inputs.

• Input values must be in the range 0-127.

upperbound Fixed-Point
Toolbox

—

upsample Signal Processing
Toolbox

• Does not support variable-size inputs.

• Either declare input n as constant, or use the
assert function in the calling function to set
upper bounds for n. For example,

assert(n<10)

vander MATLAB —

var MATLAB —

vertcat Fixed-Point
Toolbox

—

wilkinson MATLAB —

20-73

20 Functions Supported for Code Generation

Function Product Remarks/Limitations

xcorr Signal Processing
Toolbox

• Does not support variable-size inputs.

• Does not support the case where A is a matrix

• Does not support partial (abbreviated) strings
of biased, unbiased, coeff, or none

• Computation performed at run time.

• Requires DSP System Toolbox license to
generate code

xor MATLAB —

yulewalk Signal Processing
Toolbox

• Does not support variable-size inputs.

• If specified, the order of recursion must be
a constant. Expressions or variables are
allowed if their values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line”.

Specifying constants

To specify a constant input for fiaccel, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 22-12.

• Requires DSP System Toolbox license to
generate code.

zeros MATLAB • Dimensions must be real, nonnegative,
integers.

zp2tf MATLAB —

20-74

Functions Supported for Code Generation — Categorical List

Functions Supported for Code Generation — Categorical
List

In this section...

“Aerospace Toolbox Functions” on page 20-76

“Arithmetic Operator Functions” on page 20-76

“Bit-Wise Operation Functions” on page 20-77

“Casting Functions” on page 20-78

“Communications System Toolbox Functions” on page 20-78

“Complex Number Functions” on page 20-78

“Computer Vision System Toolbox Functions” on page 20-79

“Data Type Functions” on page 20-80

“Derivative and Integral Functions” on page 20-80

“Discrete Math Functions” on page 20-81

“Error Handling Functions” on page 20-81

“Exponential Functions” on page 20-81

“Filtering and Convolution Functions” on page 20-82

“Fixed-Point Toolbox Functions” on page 20-82

“Histogram Functions” on page 20-91

“Image Processing Toolbox Functions” on page 20-91

“Input and Output Functions” on page 20-92

“Interpolation and Computational Geometry” on page 20-92

“Linear Algebra” on page 20-93

“Logical Operator Functions” on page 20-93

“MATLAB Compiler Functions” on page 20-94

“Matrix and Array Functions” on page 20-94

“Nonlinear Numerical Methods” on page 20-98

“Polynomial Functions” on page 20-98

20-75

20 Functions Supported for Code Generation

In this section...

“Relational Operator Functions” on page 20-98

“Rounding and Remainder Functions” on page 20-99

“Set Functions” on page 20-99

“Signal Processing Functions in MATLAB” on page 20-100

“Signal Processing Toolbox Functions” on page 20-101

“Special Values” on page 20-105

“Specialized Math” on page 20-105

“Statistical Functions” on page 20-106

“String Functions” on page 20-106

“Structure Functions” on page 20-107

“Trigonometric Functions” on page 20-108

Aerospace Toolbox Functions

Function Description

quatconj Calculate conjugate of quaternion

quatdivide Divide quaternion by another quaternion

quatinv Calculate inverse of quaternion

quatmod Calculate modulus of quaternion

quatmultiply Calculate product of two quaternions

quatnorm Calculate norm of quaternion

quatnormalize Normalize quaternion

Arithmetic Operator Functions
See Arithmetic Operators for detailed descriptions of the following operator
equivalent functions.

20-76

Functions Supported for Code Generation — Categorical List

Function Description

ctranspose Complex conjugate transpose (')

idivide Integer division with rounding option

isa Determine if input is object of given class

ldivide Left array divide

minus Minus (-)

mldivide Left matrix divide (\)

mpower Equivalent of array power operator (.^)

mrdivide Right matrix divide

mtimes Matrix multiply (*)

plus Plus (+)

power Array power

rdivide Right array divide

times Array multiply

transpose Matrix transpose (')

uminus Unary minus (-)

uplus Unary plus (+)

Bit-Wise Operation Functions

Function Description

flintmax Largest consecutive integer in floating-point format

swapbytes Swap byte ordering

20-77

20 Functions Supported for Code Generation

Casting Functions

Data Type Description

cast Cast variable to different data type

char Create character array (string)

class Query class of object argument

double Convert to double-precision floating point

int8, int16, int32 Convert to signed integer data type

logical Convert to Boolean true or false data type

single Convert to single-precision floating point

typecast Convert data types without changing underlying data

uint8, uint16,
uint32

Convert to unsigned integer data type

Communications System Toolbox Functions
Function Remarks/Limitations

bi2de —

de2bi —

istrellis —

poly2trellis —

rcosfir —

Complex Number Functions

Function Description

complex Construct complex data from real and imaginary components

conj Return the conjugate of a complex number

imag Return the imaginary part of a complex number

isnumeric Return true for numeric arrays

20-78

Functions Supported for Code Generation — Categorical List

Function Description

isreal Return false (0) for a complex number

isscalar Return true if array is a scalar

real Return the real part of a complex number

unwrap Correct phase angles to produce smoother phase plots

Computer Vision System Toolbox Functions

Function Description

epipolarLine Compute epipolar lines for stereo images

estimateFundamentalMatrix Estimate fundamental matrix from corresponding
points in stereo image

estimateUncalibratedRectification Uncalibrated stereo rectification

extractFeatures Extract interest point descriptors

integralImage Compute integral image

isEpipoleInImage Determine whether image contains epipole

20-79

20 Functions Supported for Code Generation

Function Description

vision.KalmanFilter Kalman filter for object tracking

lineToBorderPoints Intersection points of lines in image and image
border

matchFeatures Find matching image features

Data Type Functions

Function Description

deal Distribute inputs to outputs

iscell Determine whether input is cell array

nargchk Validate number of input arguments

Note nargchk will be removed in a future release.

nargoutchk Validate number of output arguments

str2func Construct function handle from function name string

structfun Apply function to each field of scalar structure

Derivative and Integral Functions

Function Description

cumtrapz Cumulative trapezoidal numerical integration

del2 Discrete Laplacian

20-80

Functions Supported for Code Generation — Categorical List

Function Description

diff Differences and approximate derivatives

gradient Numerical gradient

trapz Trapezoidal numerical integration

Discrete Math Functions

Function Description

factor Return a row vector containing the prime factors of n

gcd Return an array containing the greatest common divisors of the
corresponding elements of integer arrays

isprime Array elements that are prime numbers

lcm Least common multiple of corresponding elements in arrays

nchoosek Binomial coefficient or all combinations

primes Generate list of prime numbers

Error Handling Functions

Function Description

assert Generate error when condition is violated

error Display message and abort function

Exponential Functions

Function Description

exp Exponential

expm Matrix exponential

expm1 Compute exp(x)-1 accurately for small values of x

factorial Factorial function

20-81

20 Functions Supported for Code Generation

Function Description

log Natural logarithm

log2 Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

log10 Common (base 10) logarithm

log1p Compute log(1+x) accurately for small values of x

nextpow2 Next higher power of 2

nthroot Real nth root of real numbers

reallog Natural logarithm for nonnegative real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real arrays

sqrt Square root

Filtering and Convolution Functions

Function Description

conv Convolution and polynomial multiplication

conv2 2-D convolution

convn N-D convolution

deconv Deconvolution and polynomial division

detrend Remove linear trends

filter 1-D digital filter

filter2 2-D digital filter

Fixed-Point Toolbox Functions
In addition to any function-specific limitations listed in the table, the following
general limitations always apply to the use of Fixed-Point Toolbox functions
in generated code or with fiaccel:

20-82

Functions Supported for Code Generation — Categorical List

• fipref and quantizer objects are not supported.

• Word lengths greater than 128 bits are not supported.

• You cannot change the fimath or numerictype of a given fi variable after
that variable has been created.

• The boolean value of the DataTypeMode and DataType properties are not
supported.

• For all SumMode property settings other than FullPrecision, the
CastBeforeSum property must be set to true.

• The numel function returns the number of elements of fi objects in the
generated code.

• You can use parallel for (parfor) loops in code compiled with fiaccel, but
those loops are treated like regular for loops.

• When you compile code containing fi objects with nontrivial slope and bias
scaling, you may see different results in generated code than you achieve
by running the same code in MATLAB.

• All general limitations of C/C++ code generated from MATLAB apply. See
“MATLAB Language Features Not Supported for C/C++ Code Generation”
for more information.

Function Remarks/Limitations

abs N/A

accumneg N/A

accumpos N/A

add N/A

all N/A

any N/A

atan2 N/A

bitand Not supported for slope-bias scaled fi objects.

bitandreduce N/A

bitcmp N/A

20-83

20 Functions Supported for Code Generation

Function Remarks/Limitations

bitconcat N/A

bitget N/A

bitor Not supported for slope-bias scaled fi objects.

bitorreduce N/A

bitreplicate N/A

bitrol N/A

bitror N/A

bitset N/A

bitshift N/A

bitsliceget N/A

bitsll N/A

bitsra N/A

bitsrl N/A

bitxor Not supported for slope-bias scaled fi objects.

bitxorreduce N/A

ceil N/A

complex N/A

conj N/A

conv • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
always computed using the SumMode property of the governing
fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when both
inputs are nonscalar. However, if either input is a scalar,

20-84

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

MATLAB computes the output using the ProductMode of the
governing fimath.

convergent N/A

cordicabs Variable-size signals are not supported.

cordicangle Variable-size signals are not supported.

cordicatan2 Variable-size signals are not supported.

cordiccart2pol Variable-size signals are not supported.

cordiccexp Variable-size signals are not supported.

cordiccos Variable-size signals are not supported.

cordicpol2cart Variable-size signals are not supported.

cordicrotate Variable-size signals are not supported.

cordicsin Variable-size signals are not supported.

cordicsincos Variable-size signals are not supported.

cos N/A

ctranspose N/A

diag If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

divide • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Complex and imaginary divisors are not supported.

• Code generation in MATLAB does not support the syntax
T.divide(a,b).

double N/A

end N/A

eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and fi double
signals.

eq Not supported for fixed-point signals with different biases.

20-85

20 Functions Supported for Code Generation

Function Remarks/Limitations

fi • The default constructor syntax without any input arguments is
not supported.

• If the numerictype is not fully specified, the input to fi must be
a constant, a fi, a single, or a built-in integer value. If the input
is a built-in double value, it must be a constant. This limitation
allows fi to autoscale its fraction length based on the known data
type of the input.

• numerictype object information must be available for
nonfixed-point Simulink inputs.

filter • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

fimath • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a fimath object. You define this object in
the MATLAB Function block dialog in the Model Explorer.

• Use to create fimath objects in the generated code.

fix N/A

fixed.Quantizer N/A

floor N/A

ge Not supported for fixed-point signals with different biases.

get The syntax structure = get(o) is not supported.

getlsb N/A

getmsb N/A

gt Not supported for fixed-point signals with different biases.

hdlram N/A

horzcat N/A

imag N/A

int8, int16, int32 N/A

iscolumn N/A

20-86

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

isempty N/A

isequal N/A

isfi N/A

isfimath N/A

isfimathlocal N/A

isfinite N/A

isinf N/A

isnan N/A

isnumeric N/A

isnumerictype N/A

isreal N/A

isrow N/A

isscalar N/A

issigned N/A

isvector N/A

le Not supported for fixed-point signals with different biases.

length N/A

logical N/A

lowerbound N/A

lsb • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and double
signals.

lt Not supported for fixed-point signals with different biases.

max N/A

mean N/A

median N/A

20-87

20 Functions Supported for Code Generation

Function Remarks/Limitations

min N/A

minus Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

mpower • The exponent input, k, must be constant; that is, its value must be
known at compile time.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
always computed using the SumMode property of the governing
fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
the first input, a, is nonscalar. However, when a is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

mpy When you provide complex inputs to the mpy function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and data
manager and set the Complexity parameter for all known complex
inputs to On.

mrdivide N/A

20-88

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

mtimes • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
always computed using the SumMode property of the governing
fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when both
inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

ndims N/A

ne Not supported for fixed-point signals with different biases.

nearest N/A

numberofelements numberofelements and numel both work the same as MATLAB
numel for fi objects in the generated code.

numerictype • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a numerictype object that is populated
with the signal’s data type and scaling information.

• Returns the data type when the input is a nonfixed-point signal.

• Use to create numerictype objects in generated code.

permute N/A

plus Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

pow2 N/A

power The exponent input, k, must be constant; that is, its value must be
known at compile time.

20-89

20 Functions Supported for Code Generation

Function Remarks/Limitations

quantize N/A

range N/A

rdivide N/A

real N/A

realmax N/A

realmin N/A

reinterpretcast N/A

removefimath N/A

repmat N/A

rescale N/A

reshape N/A

round N/A

setfimath N/A

sfi N/A

sign N/A

sin N/A

single N/A

size N/A

sort N/A

sqrt • Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.

storedInteger N/A

storedIntegerToDouble N/A

sub N/A

subsasgn N/A

subsref N/A

20-90

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

sum Variable-sized inputs are only supported when the SumMode property
of the governing fimath is set to Specify precision or Keep LSB.

times • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• When you provide complex inputs to the times function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

transpose N/A

tril If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

triu If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

ufi N/A

uint8, uint16, uint32 N/A

uminus N/A

uplus N/A

upperbound N/A

vertcat N/A

Histogram Functions

Function Description

hist Non-graphical histogram

histc Histogram count

Image Processing Toolbox Functions
You must have the MATLAB Coder and Image Processing Toolbox software
installed to generate C/C++ code from MATLAB for these functions.

20-91

20 Functions Supported for Code Generation

Function Remarks/Limitations

bwlookup For best results, specify an input image of class logical.

bwmorph The text string specifying the operation must be a constant and, for
best results, specify an input image of class logical.

fspecial All inputs must be constants at compilation time. Expressions or
variables are allowed if their values do not change.

label2rgb Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the label matrix, L, and the
colormap matrix, map.

• map must be an n-by-3, double, colormap matrix. You cannot use
a string containing the name of a MATLAB colormap function or a
function handle of a colormap function.

• If you set the boundary color zerocolor to the same color as one of
the regions, label2rgb will not issue a warning.

• If you supply a value for order, it must be 'noshuffle'.

Input and Output Functions

Function Description

nargin Return the number of input arguments a user has supplied

nargout Return the number of output return values a user has requested

Interpolation and Computational Geometry

Function Description

cart2pol Transform Cartesian coordinates to polar or cylindrical

cart2sph Transform Cartesian coordinates to spherical

interp1 1-D data interpolation (table lookup)

20-92

Functions Supported for Code Generation — Categorical List

Function Description

interp2 2-D data interpolation (table lookup)

meshgrid Generate X and Y arrays for 3-D plots

pol2cart Transform polar or cylindrical coordinates to Cartesian

sph2cart Transform spherical coordinates to Cartesian

Linear Algebra

Function Description

linsolve Solve linear system of equations

null Null space

orth Range space of matrix

rsf2csf Convert real Schur form to complex Schur form

schur Schur decomposition

sqrtm Matrix square root

Logical Operator Functions

Function Description

and Logical AND (&&)

bitand Bitwise AND

bitcmp Bitwise complement

bitget Bit at specified position

bitor Bitwise OR

bitset Set bit at specified position

bitshift Shift bits specified number of places

bitxor Bitwise XOR

20-93

20 Functions Supported for Code Generation

Function Description

not Logical NOT (~)

or Logical OR (||)

xor Logical exclusive-OR

MATLAB Compiler Functions

Function Description

isdeployed Determine whether code is running in deployed or MATLAB mode

ismcc Test if code is running during compilation process (using mcc)

Matrix and Array Functions

Function Description

abs Return absolute value and complex magnitude of an array

all Test if all elements are nonzero

angle Phase angle

any Test for any nonzero elements

blkdiag Construct block diagonal matrix from input arguments

bsxfun Applies element-by-element binary operation to two arrays with
singleton expansion enabled

cat Concatenate arrays along specified dimension

circshift Shift array circularly

compan Companion matrix

cond Condition number of a matrix with respect to inversion

cov Covariance matrix

cross Vector cross product

cumprod Cumulative product of array elements

20-94

Functions Supported for Code Generation — Categorical List

Function Description

cumsum Cumulative sum of array elements

det Matrix determinant

diag Return a matrix formed around the specified diagonal vector and the
specified diagonal (0, 1, 2,...) it occupies

diff Differences and approximate derivatives

dot Vector dot product

eig Eigenvalues and eigenvectors

eye Identity matrix

false Return an array of 0s for the specified dimensions

find Find indices and values of nonzero elements

flipdim Flip array along specified dimension

fliplr Flip matrix left to right

flipud Flip matrix up to down

full Convert sparse matrix to full matrix

hadamard Hadamard matrix

hankel Hankel matrix

hilb Hilbert matrix

ind2sub Subscripts from linear index

inv Inverse of a square matrix

invhilb Inverse of Hilbert matrix

ipermute Inverse permute dimensions of array

iscolumn True if input is a column vector

isempty Determine whether array is empty

isequal Test arrays for equality

isequaln Test arrays for equality, treating NaNs as equal

isfinite Detect finite elements of an array

isfloat Determine if input is floating-point array

20-95

20 Functions Supported for Code Generation

Function Description

isinf Detect infinite elements of an array

isinteger Determine if input is integer array

islogical Determine if input is logical array

ismatrix True if input is a matrix

isnan Detect NaN elements of an array

isrow True if input is a row vector

issparse Determine whether input is sparse

isvector Determine whether input is vector

kron Kronecker tensor product

length Return the length of a matrix

linspace Generate linearly spaced vectors

logspace Generate logarithmically spaced vectors

lu Matrix factorization

magic Magic square

max Maximum elements of a matrix

min Minimum elements of a matrix

ndgrid Generate arrays for N-D functions and interpolation

ndims Number of dimensions

nnz Number of nonzero matrix elements

nonzeros Nonzero matrix elements

norm Vector and matrix norms

normest 2-norm estimate

numel Number of elements in array or subscripted array

ones Create a matrix of all 1s

pascal Pascal matrix

permute Rearrange dimensions of array

20-96

Functions Supported for Code Generation — Categorical List

Function Description

pinv Pseudoinverse of a matrix

planerot Givens plane rotation

prod Product of array element

qr Orthogonal-triangular decomposition

rand Uniformly distributed pseudorandom numbers

randi Uniformly distributed pseudorandom integers

randn Normally distributed random numbers

randperm Random permutation

rank Rank of matrix

rcond Matrix reciprocal condition number estimate

repmat Replicate and tile an array

reshape Reshape one array into the dimensions of another

rng Control random number generation

rosser Classic symmetric eigenvalue test problem

rot90 Rotate matrix 90 degrees

shiftdim Shift dimensions

sign Signum function

size Return the size of a matrix

sort Sort elements in ascending or descending order

sortrows Sort rows in ascending order

squeeze Remove singleton dimensions

sub2ind Single index from subscripts

subspace Angle between two subspaces

sum Sum of matrix elements

toeplitz Toeplitz matrix

trace Sum of diagonal elements

20-97

20 Functions Supported for Code Generation

Function Description

tril Extract lower triangular part

triu Extract upper triangular part

true Return an array of logical (Boolean) 1s for the specified dimensions

vander Vandermonde matrix

wilkinson Wilkinson’s eigenvalue test matrix

zeros Create a matrix of all zeros

Nonlinear Numerical Methods

Function Description

fzero Find root of continuous function of one variable

quad2d Numerically evaluate double integral over planar region

quadgk Numerically evaluate integral, adaptive Gauss-Kronrod quadrature

Polynomial Functions

Function Description

poly Polynomial with specified roots

polyfit Polynomial curve fitting

polyval Polynomial evaluation

roots Polynomial roots

Relational Operator Functions

Function Description

eq Equal (==)

ge Greater than or equal to (>=)

20-98

Functions Supported for Code Generation — Categorical List

Function Description

gt Greater than (>)

le Less than or equal to (<=)

lt Less than (<)

ne Not equal (~=)

Rounding and Remainder Functions

Function Description

ceil Round toward plus infinity

ceil Round toward positive infinity

convergent Round toward nearest integer with ties rounding to nearest even integer

fix Round toward zero

fix Round toward zero

floor Round toward minus infinity

floor Round toward negative infinity

mod Modulus (signed remainder after division)

nearest Round toward nearest integer with ties rounding toward positive infinity

rem Remainder after division

round Round toward nearest integer

round Round fi object toward nearest integer or round input data using
quantizer object

Set Functions

Function Description

intersect Find set intersection of two vectors

ismember Array elements that are members of set

20-99

20 Functions Supported for Code Generation

Function Description

issorted Determine whether set elements are in sorted order

setdiff Find set difference of two vectors

setxor Find set exclusive OR of two vectors

union Find set union of two vectors

unique Find unique elements of vector

Signal Processing Functions in MATLAB

Function Description

chol Cholesky factorization

conv Convolution and polynomial multiplication

fft Discrete Fourier transform

fft2 2-D discrete Fourier transform

fftn N-D discrete Fourier transform

fftshift Shift zero-frequency component to center of spectrum

filter Filter a data sequence using a digital filter that works for both real and
complex inputs

freqspace Frequency spacing for frequency response

ifft Inverse discrete Fourier transform

ifft2 2-D inverse discrete Fourier transform

ifftn N-D inverse discrete Fourier transform

ifftshift Inverse discrete Fourier transform shift

svd Singular value decomposition

zp2tf Convert zero-pole-gain filter parameters to transfer function form

20-100

Functions Supported for Code Generation — Categorical List

Signal Processing Toolbox Functions
All of these functions require a DSP System Toolbox license to generate code.
These functions do not support variable-size inputs, you must define the size
and type of the function inputs. For more information, see “Specifying Inputs
in Code Generation from MATLAB ”.

Note Many Signal Processing Toolbox functions require constant inputs in
generated code. To specify a constant input for codegen, use coder.Constant.

Function Remarks/Limitations

barthannwin Window length must be a constant. Expressions or variables are
allowed if their values do not change.

bartlett Window length must be a constant. Expressions or variables are
allowed if their values do not change.

besselap Filter order must be a constant. Expressions or variables are allowed if
their values do not change.

bitrevorder —

blackman Window length must be a constant. Expressions or variables are
allowed if their values do not change.

blackmanharris Window length must be a constant. Expressions or variables are
allowed if their values do not change.

bohmanwin Window length must be a constant. Expressions or variables are
allowed if their values do not change.

buttap Filter order must be a constant. Expressions or variables are allowed if
their values do not change.

butter Filter coefficients must be constants. Expressions or variables are
allowed if their values do not change.

buttord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cfirpm All inputs must be constants. Expressions or variables are allowed if
their values do not change.

20-101

20 Functions Supported for Code Generation

Function Remarks/Limitations

cheb1ap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb2ap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb1ord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb2ord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

chebwin All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheby1 All Inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheby2 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

dct Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

downsample —

dpss All inputs must be constants. Expressions or variables are allowed if
their values do not change.

ellip Inputs must be constant. Expressions or variables are allowed if their
values do not change.

ellipap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

ellipord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

filtfilt Filter coefficients must be constants. Expressions or variables are
allowed if their values do not change.

fir1 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

20-102

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

fir2 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fircls All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fircls1 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firls All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firpm All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firpmord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firrcos All inputs must be constants. Expressions or variables are allowed if
their values do not change.

flattopwin All inputs must be constants. Expressions or variables are allowed if
their values do not change.

freqz freqz with no output arguments produces a plot only when the function
call terminates in a semicolon. See “freqzWith No Output Arguments”.

gaussfir All inputs must be constant. Expressions or variables are allowed if
their values do not change.

gausswin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

hamming All inputs must be constant. Expressions or variables are allowed if
their values do not change.

hann All inputs must be constant. Expressions or variables are allowed if
their values do not change.

idct Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

intfilt All inputs must be constant. Expressions or variables are allowed if
their values do not change.

20-103

20 Functions Supported for Code Generation

Function Remarks/Limitations

kaiser All inputs must be constant. Expressions or variables are allowed if
their values do not change.

kaiserord —

levinson If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

maxflat All inputs must be constant. Expressions or variables are allowed if
their values do not change.

nuttallwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

parzenwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

rectwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

resample The upsampling and downsampling factors must be specified as
constants. Expressions or variables are allowed if their values do not
change.

sgolay All inputs must be constant. Expressions or variables are allowed if
their values do not change.

sosfilt —

taylorwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

triang All inputs must be constant. Expressions or variables are allowed if
their values do not change.

tukeywin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

upfirdn • Filter coefficients, upsampling factor, and downsampling factor must
be constants. Expressions or variables are allowed if their values
do not change.

• Variable-size inputs are not supported.

20-104

Functions Supported for Code Generation — Categorical List

Function Remarks/Limitations

upsample Either declare input n as constant, or use the assert function in the
calling function to set upper bounds for n. For example,

assert(n<10)

xcorr —

yulewalk If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

Special Values

Symbol Description

eps Floating-point relative accuracy

inf IEEE® arithmetic representation for positive infinity

intmax Largest possible value of specified integer type

intmin Smallest possible value of specified integer type

NaN or nan Not a number

pi Ratio of the circumference to the diameter for a circle

realmax Largest positive floating-point number

realmin Smallest positive floating-point number

Specialized Math

Symbol Description

beta Beta function

betainc Incomplete beta function

betaln Logarithm of beta function

ellipke Complete elliptic integrals of first and second kind

erf Error function

20-105

20 Functions Supported for Code Generation

Symbol Description

erfc Complementary error function

erfcinv Inverse of complementary error function

erfcx Scaled complementary error function

erfinv Inverse error function

expint Exponential integral

gamma Gamma function

gammainc Incomplete gamma function

gammaln Logarithm of the gamma function

Statistical Functions

Function Description

corrcoef Correlation coefficients

mean Average or mean value of array

median Median value of array

mode Most frequent values in array

std Standard deviation

var Variance

String Functions

Function Description

bin2dec Convert binary number string to decimal number

bitmax Maximum double-precision floating-point integer

blanks Create string of blank characters

char Create character array (string)

deblank Strip trailing blanks from end of string

20-106

Functions Supported for Code Generation — Categorical List

Function Description

dec2bin Convert decimal to binary number in string

dec2hex Convert decimal to hexadecimal number in string

hex2dec Convert hexadecimal number string to decimal number

hex2num Convert hexadecimal number string to double-precision number

ischar True for character array (string)

isletter Array elements that are alphabetic letters

isspace Array elements that are space characters

isstrprop Determine whether string is of specified category

lower Convert string to lowercase

num2hex Convert singles and doubles to IEEE hexadecimal strings

strcmp Compare strings (case sensitive)

strcmpi Compare strings (case insensitive)

strjust Justify character array

strncmp Compare first n characters of strings (case sensitive)

strncmpi Compare first n characters of strings (case insensitive)

strtok Selected parts of string

strtrim Remove leading and trailing white space from string

upper Convert string to uppercase

Structure Functions

Function Description

isfield Determine whether input is structure array field

struct Create structure

isstruct Determine whether input is a structure

20-107

20 Functions Supported for Code Generation

Trigonometric Functions

Function Description

acos Inverse cosine

acosd Inverse cosine; result in degrees

acosh Inverse hyperbolic cosine

acot Inverse cotangent; result in radians

acotd Inverse cotangent; result in degrees

acoth Inverse hyperbolic cotangent

acsc Inverse cosecant; result in radians

acscd Inverse cosecant; result in degrees

acsch Inverse cosecant and inverse hyperbolic cosecant

asec Inverse secant; result in radians

asecd Inverse secant; result in degrees

asech Inverse hyperbolic secant

asin Inverse sine

asinh Inverse hyperbolic sine

atan Inverse tangent

atan2 Four quadrant inverse tangent

atan2d Four-quadrant inverse tangent, result in degrees

atand Inverse tangent; result in degrees

atanh Inverse hyperbolic tangent

cos Cosine

cosd Cosine; result in degrees

cosh Hyperbolic cosine

cot Cotangent; result in radians

cotd Cotangent; result in degrees

coth Hyperbolic cotangent

20-108

Functions Supported for Code Generation — Categorical List

Function Description

csc Cosecant; result in radians

cscd Cosecant; result in degrees

csch Hyperbolic cosecant

hypot Square root of sum of squares

sec Secant; result in radians

secd Secant; result in degrees

sech Hyperbolic secant

sin Sine

sind Sine; result in degrees

sinh Hyperbolic sine

tan Tangent

tand Tangent; result in degrees

tanh Hyperbolic tangent

20-109

20 Functions Supported for Code Generation

20-110

21

Code Generation for
Variable-Size Data

• “What Is Variable-Size Data?” on page 21-2

• “Variable-Size Data Definition for Code Generation” on page 21-3

• “Bounded Versus Unbounded Variable-Size Data” on page 21-4

• “Control Memory Allocation of Variable-Size Data” on page 21-5

• “Specify Variable-Size Data Without Dynamic Memory Allocation” on page
21-6

• “Variable-Size Data in Code Generation Reports” on page 21-10

• “Define Variable-Size Data for Code Generation” on page 21-12

• “C Code Interface for Arrays” on page 21-19

• “Troubleshooting Issues with Variable-Size Data” on page 21-23

• “Incompatibilities with MATLAB in Variable-Size Support for Code
Generation” on page 21-27

• “Restrictions on Variable Sizing in Toolbox Functions Supported for Code
Generation” on page 21-35

21 Code Generation for Variable-Size Data

What Is Variable-Size Data?
Variable-size data is data whose size can change at run time. By contrast,
fixed-size data is data whose size is known and locked at compile time and,
therefore, cannot change at run time.

For example, in the following MATLAB function nway, B is a variable-size
array; its length is not known at compile time.

function B = nway(A,n)
% Compute average of every N elements of A and put them in B.
if ((mod(numel(A),n) == 0) && (n>=1 && n<=numel(A)))

B = ones(1,numel(A)/n);
k = 1;
for i = 1 : numel(A)/n

B(i) = mean(A(k + (0:n-1)));
k = k + n;

end
else

error('n <= 0 or does not divide number of elements evenly');
end

21-2

Variable-Size Data Definition for Code Generation

Variable-Size Data Definition for Code Generation
In the MATLAB language, all data can vary in size. By contrast, the
semantics of generated code constrains the class, complexity, and shape of
every expression, variable, and structure field. Therefore, for code generation,
you must use each variable consistently. Each variable must:

• Be either complex or real (determined at first assignment)

• Have a consistent shape

For fixed-size data, the shape is the same as the size returned in MATLAB.
For example, if size(A) == [4 5], the shape of variable A is 4 x 5.
For variable-size data, the shape can be abstract. That is, one or more
dimensions can be unknown (such as 4x? or ?x?).

By default, the compiler detects code logic that attempts to change these fixed
attributes after initial assignments, and flags these occurrences as errors
during code generation. However, you can override this behavior by defining
variables or structure fields as variable-size data. You can then generate
standalone code for bounded and unbounded variable-size data.

For more information, see “Bounded Versus Unbounded Variable-Size Data”
on page 21-4

21-3

21 Code Generation for Variable-Size Data

Bounded Versus Unbounded Variable-Size Data
You can generate code for bounded and unbounded variable-size data.
Bounded variable-size data has fixed upper bounds; this data can be allocated
statically on the stack or dynamically on the heap. Unbounded variable-size
data does not have fixed upper bounds; this data must be allocated on the
heap. If you use unbounded data, you must use dynamic memory allocation
so that the compiler:

• Does not check for upper bounds

• Allocates memory on the heap instead of the stack

You can control the memory allocation of variable-size data. For more
information, see “Control Memory Allocation of Variable-Size Data” on page
21-5.

21-4

Control Memory Allocation of Variable-Size Data

Control Memory Allocation of Variable-Size Data
All data whose size exceeds the dynamic memory allocation threshold is
allocated on the heap. The default dynamic memory allocation threshold is
64 kilobytes. All data whose size is less than this threshold is allocated on
the stack.

Dynamic memory allocation is an expensive operation; the performance
cost may be too high for small data sets. If you use small variable-size data
sets or data that does not change size at run time, disable dynamic memory
allocation. See “Control Dynamic Memory Allocation”“Control Dynamic
Memory Allocation” on page 8-93.

You can control memory allocation globally for your application by modifying
the dynamic memory allocation threshold. See “Generate Code for a MATLAB
Function That Expands a Vector in a Loop”. You can control memory
allocation for individual variables by specifying upper bounds. See “Specifying
Upper Bounds for Variable-Size Data” on page 21-6.

21-5

21 Code Generation for Variable-Size Data

Specify Variable-Size Data Without Dynamic Memory
Allocation

In this section...

“Fixing Upper Bounds Errors” on page 21-6

“Specifying Upper Bounds for Variable-Size Data” on page 21-6

Fixing Upper Bounds Errors
If MATLAB cannot determine or compute the upper bound, you must specify
an upper bound. See “Specifying Upper Bounds for Variable-Size Data” on
page 21-6 and “Diagnosing and Fixing Errors in Detecting Upper Bounds”
on page 21-25

Specifying Upper Bounds for Variable-Size Data

• “When to Specify Upper Bounds for Variable-Size Data” on page 21-6

• “Specifying Upper Bounds on the Command Line for Variable-Size Inputs”
on page 21-6

• “Specifying Unknown Upper Bounds for Variable-Size Inputs” on page 21-7

• “Specifying Upper Bounds for Local Variable-Size Data” on page 21-7

• “Using a Matrix Constructor with Nonconstant Dimensions” on page 21-8

When to Specify Upper Bounds for Variable-Size Data
When using static allocation on the stack during code generation, MATLAB
must be able to determine upper bounds for variable-size data. Specify the
upper bounds explicitly for variable-size data from external sources, such
as inputs and outputs.

Specifying Upper Bounds on the Command Line for
Variable-Size Inputs
Use the coder.typeof construct with the -args option on the codegen
command line (requires a MATLAB Coder license). For example:

21-6

Specify Variable-Size Data Without Dynamic Memory Allocation

codegen foo -args {coder.typeof(double(0),[3 100],1)}

This command specifies that the input to function foo is a matrix of real
doubles with two variable dimensions. The upper bound for the first
dimension is 3; the upper bound for the second dimension is 100. For a
detailed explanation of this syntax, see coder.typeofcoder.typeof.

Specifying Unknown Upper Bounds for Variable-Size Inputs
If you use dynamic memory allocation, you can specify that you don’t know
the upper bounds of inputs. To specify an unknown upper bound, use the
infinity constant Inf in place of a numeric value. For example:

codegen foo -args {coder.typeof(double(0), [1 Inf])}

In this example, the input to function foo is a vector of real doubles without
an upper bound.

Specifying Upper Bounds for Local Variable-Size Data
When using static allocation, MATLAB uses a sophisticated analysis to
calculate the upper bounds of local data at compile time. However, when the
analysis fails to detect an upper bound or calculates an upper bound that is
not precise enough for your application, you need to specify upper bounds
explicitly for local variables.

You do not need to specify upper bounds when using dynamic allocation on
the heap. In this case, MATLAB assumes all variable-size data is unbounded
and does not attempt to determine upper bounds.

Constraining the Value of a Variable That Specifies Dimensions of
Variable-Size Data. Use the assert function with relational operators to
constrain the value of variables that specify the dimensions of variable-size
data. For example:

function y = dim_need_bound(n) %#codegen
assert (n <= 5);
L= ones(n,n);
M = zeros(n,n);
M = [L; M];
y = M;

21-7

21 Code Generation for Variable-Size Data

This assert statement constrains input n to a maximum size of 5, defining L
and M as variable-sized matrices with upper bounds of 5 for each dimension.

Specifying the Upper Bounds for All Instances of a Local Variable.
Use the coder.varsize function to specify the upper bounds for all instances
of a local variable in a function. For example:

function Y = example_bounds1(u) %#codegen
Y = [1 2 3 4 5];
coder.varsize('Y', [1 10]);
if (u > 0)

Y = [Y Y+u];
else

Y = [Y Y*u];
end

The second argument of coder.varsize specifies the upper bound for each
instance of the variable specified in the first argument. In this example, the
argument [1 10] indicates that for every instance of Y:

• First dimension is fixed at size 1

• Second dimension can grow to an upper bound of 10

By default, coder.varsize assumes dimensions of 1 are fixed size. For more
information, see the coder.varsizecoder.varsizecoder.varsize reference
page.

Using a Matrix Constructor with Nonconstant Dimensions
You can define a variable-size matrix by using a constructor with nonconstant
dimensions. For example:

function y = var_by_assign(u) %#codegen
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

21-8

Specify Variable-Size Data Without Dynamic Memory Allocation

If you are not using dynamic memory allocation, you must also add an assert
statement to provide upper bounds for the dimensions. For example:

function y = var_by_assign(u) %#codegen
assert (u < 20);
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

21-9

21 Code Generation for Variable-Size Data

Variable-Size Data in Code Generation Reports

In this section...

“What Reports Tell You About Size” on page 21-10

“How Size Appears in Code Generation Reports” on page 21-11

“How to Generate a Code Generation Report” on page 21-11

What Reports Tell You About Size
Code generation reports:

• Differentiate fixed-size from variable-size data

• Identify variable-size data with unknown upper bounds

• Identify variable-size data with fixed dimensions

If you define a variable-size array and then subsequently fix the dimensions
of this array in the code, the report appends * to the size of the variable. In
the generated C code, this variable appears as a variable-size array, but
the size of its dimensions does not change during execution.

• Provide guidance on how to fix size mismatch and upper bounds errors.

21-10

Variable-Size Data in Code Generation Reports

How Size Appears in Code Generation Reports

��	����	��������	�����
�������	�����	�����

��	
����	������	 �!
	����	�����	����

�"##	����	��������	�����
�����	�����	$	"##

%	����	�&��	'��	��
�����	'	��	��������	�����
���	�����(�����'	�����	���	���������

How to Generate a Code Generation Report
Add the -report option to your codegen command.

Add the -report option to your fiaccel command.

21-11

21 Code Generation for Variable-Size Data

Define Variable-Size Data for Code Generation

In this section...

“When to Define Variable-Size Data Explicitly” on page 21-12

“Using a Matrix Constructor with Nonconstant Dimensions” on page 21-13

“Inferring Variable Size from Multiple Assignments” on page 21-13

“Defining Variable-Size Data Explicitly Using coder.varsize” on page 21-14

When to Define Variable-Size Data Explicitly
For code generation, you must assign variables to have a specific class,
size, and complexity before using them in operations or returning them as
outputs. Generally, you cannot reassign variable properties after the initial
assignment. Therefore, attempts to grow a variable or structure field after
assigning it a fixed size might cause a compilation error. In these cases, you
must explicitly define the data as variable sized using one of these methods:

Method See

Assign the data from a variable-size
matrix constructor such as
• ones

• zeros

• repmat

“Using a Matrix Constructor with
Nonconstant Dimensions” on page
21-13

Assign multiple, constant sizes
to the same variable before using
(reading) the variable.

“Inferring Variable Size from
Multiple Assignments” on page
21-13

Define all instances of a variable to
be variable sized

“Defining Variable-Size Data
Explicitly Using coder.varsize” on
page 21-14

21-12

Define Variable-Size Data for Code Generation

Using a Matrix Constructor with Nonconstant
Dimensions
You can define a variable-size matrix by using a constructor with nonconstant
dimensions. For example:

function y = var_by_assign(u) %#codegen
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

Inferring Variable Size from Multiple Assignments
You can define variable-size data by assigning multiple, constant sizes to the
same variable before you use (read) the variable in your code. When MATLAB
uses static allocation on the stack for code generation, it infers the upper
bounds from the largest size specified for each dimension. When you assign
the same size to a given dimension across all assignments, MATLAB assumes
that the dimension is fixed at that size. The assignments can specify different
shapes as well as sizes.

When dynamic memory allocation is used, MATLAB does not check for upper
bounds; it assumes all variable-size data is unbounded.

Inferring Upper Bounds from Multiple Definitions with Different
Shapes

function y = var_by_multiassign(u) %#codegen
if (u > 0)

y = ones(3,4,5);
else

y = zeros(3,1);
end

When static allocation is used, this function infers that y is a matrix with
three dimensions, where:

• First dimension is fixed at size 3

21-13

21 Code Generation for Variable-Size Data

• Second dimension is variable with an upper bound of 4

• Third dimension is variable with an upper bound of 5

The code generation report represents the size of matrix y like this:

When dynamic allocation is used, the function analyzes the dimensions of
y differently:

• First dimension is fixed at size 3

• Second and third dimensions are unbounded

In this case, the code generation report represents the size of matrix y like
this:

Defining Variable-Size Data Explicitly Using
coder.varsize
Use the function coder.varsize to define one or more variables or structure
fields as variable-size data. Optionally, you can also specify which dimensions
vary along with their upper bounds (see “Specifying Which Dimensions Vary”
on page 21-15). For example:

• Define B as a variable-size 2-by-2 matrix, where each dimension has an
upper bound of 64:

coder.varsize('B', [64 64]);

• Define B as a variable-size matrix:

21-14

Define Variable-Size Data for Code Generation

coder.varsize('B');

When you supply only the first argument, coder.varsize assumes all
dimensions of B can vary and that the upper bound is size(B).

For more information, see the coder.varsizecoder.varsizecoder.varsize
reference page.

Specifying Which Dimensions Vary
You can use the function coder.varsize to specify which dimensions vary.
For example, the following statement defines B as a row vector whose first
dimension is fixed at 2, but whose second dimension can grow to an upper
bound of 16:

coder.varsize('B', [2, 16], [0 1])

The third argument specifies which dimensions vary. This argument must be
a logical vector or a double vector containing only zeros and ones. Dimensions
that correspond to zeros or false have fixed size; dimensions that correspond
to ones or true vary in size. coder.varsize usually treats dimensions of size
1 as fixed (see “Defining Variable-Size Matrices with Singleton Dimensions”
on page 21-16).

For more information about the syntax, see the
coder.varsizecoder.varsizecoder.varsize reference page.

Allowing a Variable to Grow After Defining Fixed Dimensions
Function var_by_if defines matrix Y with fixed 2-by-2 dimensions before first
use (where the statement Y = Y + u reads from Y). However, coder.varsize
defines Y as a variable-size matrix, allowing it to change size based on decision
logic in the else clause:

function Y = var_by_if(u) %#codegen
if (u > 0)

Y = zeros(2,2);
coder.varsize('Y');
if (u < 10)

Y = Y + u;
end

21-15

21 Code Generation for Variable-Size Data

else
Y = zeros(5,5);

end

Without coder.varsize, MATLAB infers Y to be a fixed-size, 2-by-2 matrix
and generates a size mismatch error during code generation.

Defining Variable-Size Matrices with Singleton Dimensions
A singleton dimension is any dimension for which size(A,dim) = 1. Singleton
dimensions are fixed in size when:

• You specify a dimension with an upper bound of 1 in coder.varsize
expressions.

For example, in this function, Y behaves like a vector with one variable-size
dimension:

function Y = dim_singleton(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10]);
if (u > 0)

Y = [Y 3];
else

Y = [Y u];
end

• You initialize variable-size data with singleton dimensions using matrix
constructor expressions or matrix functions.

For example, in this function, both X and Y behave like vectors where only
their second dimensions are variable sized:

function [X,Y] = dim_singleton_vects(u) %#codegen
Y = ones(1,3);
X = [1 4];
coder.varsize('Y','X');
if (u > 0)

Y = [Y u];
else

X = [X u];
end

21-16

Define Variable-Size Data for Code Generation

You can override this behavior by using coder.varsize to specify explicitly
that singleton dimensions vary. For example:

function Y = dim_singleton_vary(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10], [1 1]);
if (u > 0)

Y = [Y Y+u];
else

Y = [Y Y*u];
end

In this example, the third argument of coder.varsize is a vector of ones,
indicating that each dimension of Y varies in size. For more information, see
the coder.varsizecoder.varsizecoder.varsize reference page.

Defining Variable-Size Structure Fields
To define structure fields as variable-size arrays, use colon (:) as the index
expression. The colon (:) indicates that all elements of the array are variable
sized. For example:

function y=struct_example() %#codegen

d = struct('values', zeros(1,0), 'color', 0);
data = repmat(d, [3 3]);
coder.varsize('data(:).values');

for i = 1:numel(data)
data(i).color = rand-0.5;
data(i).values = 1:i;

end

y = 0;
for i = 1:numel(data)

if data(i).color > 0
y = y + sum(data(i).values);

end;
end

21-17

21 Code Generation for Variable-Size Data

The expression coder.varsize('data(:).values') defines the field values
inside each element of matrix data to be variable sized.

Here are other examples:

• coder.varsize('data.A(:).B')

In this example, data is a scalar variable that contains matrix A. Each
element of matrix A contains a variable-size field B.

• coder.varsize('data(:).A(:).B')

This expression defines field B inside each element of matrix A inside each
element of matrix data to be variable sized.

21-18

C Code Interface for Arrays

C Code Interface for Arrays

In this section...

“C Code Interface for Statically Allocated Arrays” on page 21-19

“C Code Interface for Dynamically Allocated Arrays” on page 21-20

“Utility Functions for Creating emxArray Data Structures” on page 21-21

C Code Interface for Statically Allocated Arrays
In generated code, MATLAB contains two pieces of information about
statically allocated arrays: the maximum size of the array and its actual size.

For example, consider the MATLAB function uniquetol:

function B = uniquetol(A, tol) %#codegen
A = sort(A);
coder.varsize('B');
B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

Generate code for uniquetol specifying that input A is a variable-size real
double vector whose first dimension is fixed at 1 and second dimension can
vary up to 100 elements.

codegen -config:lib -report uniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

In the generated code, the function declaration is:

extern void uniquetol(const real_T A_data[100], const int32_T A_size[2],...
real_T tol, emxArray_real_T *B);

21-19

21 Code Generation for Variable-Size Data

There are two pieces of information about A:

• real_T A_data[100]: the maximum size of input A (where 100 is the
maximum size specified using coder.typeof).

• int32_T_A_sizes[2]: the actual size of the input.

C Code Interface for Dynamically Allocated Arrays
In generated code, MATLAB represents dynamically allocated data as a
structure type called emxArray. An embeddable version of the MATLAB
mxArray, the emxArray is a family of data types, specialized for all base types.

emxArray Structure Definition

typedef struct emxArray_<baseTypeName>
{

<baseTypeName> *data;
int32_T *size;
int32_T allocated;
int32_T numDimensions;
boolean_T canFreeData;

} emxArray_<baseTypeName>;

For example, here’s the definition for an emxArray of base type real_T with
unknown upper bounds:

typedef struct emxArray_real_T
{

real_T *data;
int32_T *size;
int32_T allocated;
int32_T numDimensions;
boolean_T canFreeData;

} emxArray_real_T;

To define two variables, in1 and in2, of this type, use this statement:

emxArray_real_T *in1, *in2;

21-20

C Code Interface for Arrays

C Code Interface for Structure Fields

Field Description

*data Pointer to data of type <baseTypeName>

*size Pointer to first element of size vector. Length
of the vector equals the number of dimensions.

allocatedSize Number of elements currently allocated for the
array. If the size changes, MATLAB reallocates
memory based on the new size.

numDimensions Number of dimensions of the size vector, that
is, the number of dimensions you can access
without crossing into unallocated or unused
memory

canFreeData Boolean flag indicating how to deallocate
memory:
• true – MATLAB deallocates memory
automatically

• false – Calling program determines when
to deallocate memory

Utility Functions for Creating emxArray Data
Structures
When you generate code that uses variable-size data, the code generation
software exports a set of utility functions that you can use to create and
interact with emxArrays in your generated code. To call these functions in
your main C function, include the generated header file. For example, when
you generate code for function foo, include foo_emxAPI.h in your main C
function. For more information, see the “Write a C Main Function” section in
“Using Dynamic Memory Allocation for an "Atoms" Simulation”.

21-21

21 Code Generation for Variable-Size Data

Function Arguments Description

emxArray_<baseTypeName>
*emxCreateWrapper_<baseTypeName>
(...)

*data
num_rows
num_cols

Creates a new
2-dimensional
emxArray, but does not
allocate it on the heap.
Instead uses memory
provided by the user
and sets canFreeData
to false so it never
inadvertently free user
memory, such as the
stack.

emxArray_<baseTypeName>
*emxCreateWrapperND_<baseTypeName>
(...)

*data
numDimensions
*size

Same as
emxCreateWrapper,
except it creates a
new N-dimensional
emxArray.

emxArray_<baseTypeName>
*emxCreate_<baseTypeName> (...)

num_rows
num_cols

Creates a new
two-dimensional
emxArray on the heap,
initialized to zero. All
data elements have the
data type specified by
baseTypeName.

emxArray_<baseTypeName>
*emxCreateND_<baseTypeName> (...)

numDimensions
*size

Same as emxCreate,
except it creates a
new N-dimensional
emxArray on the heap.

emxArray_<baseTypeName>
*emxDestroyArray_<baseTypeName>
(...)

*emxArray Frees dynamic
memory allocated
by *emxCreate
and *emxCreateND
functions.

21-22

Troubleshooting Issues with Variable-Size Data

Troubleshooting Issues with Variable-Size Data

In this section...

“Diagnosing and Fixing Size Mismatch Errors” on page 21-23

“Diagnosing and Fixing Errors in Detecting Upper Bounds” on page 21-25

Diagnosing and Fixing Size Mismatch Errors
Check your code for these issues:

Assigning Variable-Size Matrices to Fixed-Size Matrices

You cannot assign variable-size matrices to fixed-size matrices in generated
code. Consider this example:

function Y = example_mismatch1(n) %#codegen
assert(n<10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)

A = B;
end
Y = A;

Compiling this function produces this error:

??? Dimension 1 is fixed on the left-hand side
but varies on the right ...

There are several ways to fix this error:

• Allow matrix A to grow by adding the coder.varsize construct:

function Y = example_mismatch1_fix1(n) %#codegen
coder.varsize('A');
assert(n<10);
B = ones(n,n);
A = magic(3);

21-23

21 Code Generation for Variable-Size Data

A(1) = mean(A(:));
if (n == 3)

A = B;
end
Y = A;

• Explicitly restrict the size of matrix B to 3-by-3 by modifying the assert
statement:

function Y = example_mismatch1_fix2(n) %#codegen
coder.varsize('A');
assert(n==3)
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)

A = B;
end
Y = A;

• Use explicit indexing to make B the same size as A:

function Y = example_mismatch1_fix3(n) %#codegen
assert(n<10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)

A = B(1:3, 1:3);
end
Y = A;

Empty Matrix Reshaped to Match Variable-Size Specification

If you assign an empty matrix [] to variable-size data, MATLAB might
silently reshape the data in generated code to match a coder.varsize
specification. For example:

function Y = test(u) %#codegen
Y = [];
coder.varsize(`Y', [1 10]);

21-24

Troubleshooting Issues with Variable-Size Data

If u < 0
Y = [Y u];

end

In this example, coder.varsize defines Y as a column vector of up to 10
elements, so its first dimension is fixed at size 1. The statement Y = []
designates the first dimension of Y as 0, creating a mismatch. The right
hand side of the assignment is an empty matrix and the left hand side is a
variable-size vector. In this case, MATLAB reshapes the empty matrix Y =
[] in generated code to Y = zeros(1,0) so it matches the coder.varsize
specification.

Performing Binary Operations on Fixed and Variable-Size Operands

You cannot perform binary operations on operands of different sizes.
Operands have different sizes if one has fixed dimensions and the other has
variable dimensions. For example:

function z = mismatch_operands(n) %#codegen
assert(n>=3 && n<10);
x = ones(n,n);
y = magic(3);
z = x + y;

When you compile this function, you get an error because y has fixed
dimensions (3 x 3), but x has variable dimensions. Fix this problem by using
explicit indexing to make x the same size as y:

function z = mismatch_operands_fix(n) %#codegen
assert(n>=3 && n<10);
x = ones(n,n);
y = magic(3);
z = x(1:3,1:3) + y;

Diagnosing and Fixing Errors in Detecting Upper
Bounds
Check your code for these issues:

21-25

21 Code Generation for Variable-Size Data

Using Nonconstant Dimensions in a Matrix Constructor

You can define variable-size data by assigning a variable to a matrix with
nonconstant dimensions. For example:

function y = dims_vary(u) %#codegen
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

However, compiling this function generates an error because you did not
specify an upper bound for u.

There are several ways to fix the problem:

• Enable dynamic memory allocation and recompile. During code generation,
MATLAB does not check for upper bounds when it uses dynamic memory
allocation for variable-size data.

• If you do not want to use dynamic memory allocation, add an assert
statement before the first use of u:

function y = dims_vary_fix(u) %#codegen
assert (u < 20);
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

To fix the problem, add an assert statement before the first use of u:

function y = dims_vary_fix(u) %#codegen
assert (u < 20);
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

21-26

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

Incompatibilities with MATLAB in Variable-Size Support
for Code Generation

In this section...

“Incompatibility with MATLAB for Scalar Expansion” on page 21-27

“Incompatibility with MATLAB in Determining Size of Variable-Size N-D
Arrays” on page 21-29

“Incompatibility with MATLAB in Determining Size of Empty Arrays” on
page 21-30

“Incompatibility with MATLAB in Vector-Vector Indexing” on page 21-31

“Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation” on page 21-32

“Dynamic Memory Allocation Not Supported for MATLAB Function Blocks”
on page 21-34

Incompatibility with MATLAB for Scalar Expansion
Scalar expansion is a method of converting scalar data to match the
dimensions of vector or matrix data. Except for some matrix operators,
MATLAB arithmetic operators work on corresponding elements of arrays with
equal dimensions. For vectors and rectangular arrays, both operands must be
the same size unless one is a scalar. If one operand is a scalar and the other is
not, MATLAB applies the scalar to every element of the other operand—this
property is known as scalar expansion.

During code generation, the standard MATLAB scalar expansion rules
apply except when operating on two variable-size expressions. In this case,
both operands must be the same size. The generated code does not perform
scalar expansion even if one of the variable-size expressions turns out to be
scalar at run time. Instead, it generates a size mismatch error at run time
for MEX functions. For non-MEX builds, there is no run-time error checking;
the generated code will have unspecified behavior.

For example, in the following function, z is scalar for the switch statement
case 0 and case 1. MATLAB applies scalar expansion when evaluating
y(:) = z; for these two cases.

21-27

21 Code Generation for Variable-Size Data

function y = scalar_exp_test_err1(u) %#codegen
for the otherwise case of the switch function.y = ones(3);
switch u

case 0
z = 0;

case 1
z = 1;

otherwise
z = zeros(3);

end
y(:) = z;

When you generate code for this function, the code generation software
determines that z is variable size with an upper bound of 3.

If you run the MEX function with u equal to zero or one, even though z is
scalar at run time, the generated code does not perform scalar expansion
and a run-time error occurs.

scalar_exp_test_err1_mex(0)
Sizes mismatch: 9 ~= 1.

Error in scalar_exp_test_err1 (line 11)
y(:) = z;

21-28

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

Workaround
Use indexing to force z to be a scalar value:

function y = scalar_exp_test_err1(u) %#codegen
y = ones(3);
switch u

case 0
z = 0;

case 1
z = 1;

otherwise
z = zeros(3);

end
y(:) = z(1);

Incompatibility with MATLAB in Determining Size of
Variable-Size N-D Arrays
For variable-size N-D arrays, the size function can return a different result in
generated code than in MATLAB. In generated code, size(A) always returns
a fixed-length output because it does not drop trailing singleton dimensions
of variable-size N-D arrays. By contrast, size(A) in MATLAB returns a
variable-length output because it drops trailing singleton dimensions.

For example, if the shape of array A is :?x:?x:? and size(A,3)==1, size(A)
returns:

• Three-element vector in generated code

• Two-element vector in MATLAB code

Workarounds
If your application requires generated code to return the same size of
variable-size N-D arrays as MATLAB code, consider one of these workarounds:

• Use the two-argument form of size.

For example, size(A,n) always returns the same answer in generated code
and MATLAB code.

21-29

21 Code Generation for Variable-Size Data

• Rewrite size(A):

B = size(A);
X = B(1:ndims(A));

This version returns X with a variable-length output. However, you cannot
pass a variable-size X to matrix constructors such as zeros that require a
fixed-size argument.

Incompatibility with MATLAB in Determining Size of
Empty Arrays
The size of an empty array in generated code might be different from its size
in MATLAB source code. The size might be 1x0 or 0x1 in generated code,
but 0x0 in MATLAB. Therefore, you should not write code that relies on the
specific size of empty matrices.

For example, consider the following code:

function y = foo(n) %#codegen
x = [];
i=0;

while (i<10)
x = [5, x];
i=i+1;

end
if n > 0

x = [];
end
y=size(x);
end

Concatenation requires its operands to match on the size of the dimension
that is not being concatenated. In the preceding concatenation the scalar
value has size 1x1 and x has size 0x0. To support this use case, the code
generation software determines the size for x as [1 x :?]. Because there
is another assignment x = [] after the concatenation, the size of x in the
generated code is 1x0 instead of 0x0.

21-30

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

Workaround
If your application checks whether a matrix is empty, use one of these
workarounds:

• Rewrite your code to use the isempty function instead of the size function.

• Instead of using x=[] to create empty arrays, create empty arrays of a
specific size using zeros. For example:

function y = test_empty(n) %#codegen
x = zeros(1,0);
i=0;

while (i<10)
x = [5, x];
i=i+1;

end
if n > 0

x = zeros(1,0);
end
y=size(x);
end

Incompatibility with MATLAB in Vector-Vector
Indexing
In vector-vector indexing, you use one vector as an index into another vector.
When either vector is variable sized, you might get a run-time error during
code generation. Consider the index expression A(B). The general rule for
indexing is that size(A(B)) == size(B). However, when both A and B are
vectors, MATLAB applies a special rule: use the orientation of A as the
orientation of the output. For example, if size(A) == [1 5] and size(B) ==
[3 1], then size(A(B)) == [1 3].

In this situation, if the code generation software detects that both A and B are
vectors at compile time, it applies the special rule and gives the same result
as MATLAB. However, if either A or B is a variable-size matrix (has shape
?x?) at compile time, the code generation software applies only the general
indexing rule. Then, if both A and B become vectors at run time, the code
generation software reports a run-time error when you run the MEX function.
For non-MEX builds, there is no run-time error checking; the generated code

21-31

21 Code Generation for Variable-Size Data

will have unspecified behavior. It is best practice to generate and test a MEX
function before generating C code.

Workaround
Force your data to be a vector by using the colon operator for indexing:
A(B(:)). For example, suppose your code intentionally toggles between
vectors and regular matrices at run time. You can do an explicit check for
vector-vector indexing:

...
if isvector(A) && isvector(B)

C = A(:);
D = C(B(:));

else
D = A(B);

end
...

The indexing in the first branch specifies that C and B(:) are compile-time
vectors. As a result, the code generation software applies the standard
vector-vector indexing rule.

Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation
The following limitation applies to matrix indexing operations for code
generation:

• Initialization of the following style:

for i = 1:10
M(i) = 5;

end

In this case, the size of M changes as the loop is executed. Code generation
does not support increasing the size of an array over time.

For code generation, preallocate M as highlighted in the following code.

M=zeros(1,10);

21-32

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

for i = 1:10
M(i) = 5;

end

The following limitation applies to matrix indexing operations for code
generation when dynamic memory allocation is disabled:

• M(i:j) where i and j change in a loop

During code generation, memory is never dynamically allocated for the size
of the expressions that change as the program executes. To implement this
behavior, use for-loops as shown in the following example:

...
M = ones(10,10);
for i=1:10
for j = i:10
M(i,j) = 2 * M(i,j);

end
end
...

Note The matrix M must be defined before entering the loop, as shown in
the highlighted code.

The following limitations apply to matrix indexing operations for code
generation:

• Initialization of the following style:

for i = 1:10
M(i) = 5;

end

In this case, the size of M changes as the loop is executed. Code generation
does not support increasing the size of an array over time.

For code generation, preallocate M as highlighted in the following code.

M=zeros(1,10);

21-33

21 Code Generation for Variable-Size Data

for i = 1:10
M(i) = 5;

end

• M(i:j) where i and j change in a loop

During code generation, memory is never dynamically allocated for the size
of the expressions that change as the program executes. To implement this
behavior, use for-loops as shown in the following example:

...
M = ones(10,10);
for i=1:10
for j = i:10
M(i,j) = 2 * M(i,j);

end
end
...

Note The matrix M must be defined before entering the loop, as shown in
the highlighted code.

Dynamic Memory Allocation Not Supported for
MATLAB Function Blocks
You cannot use dynamic memory allocation for variable-size data in MATLAB
Function blocks. Use bounded instead of unbounded variable-size data.

21-34

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Restrictions on Variable Sizing in Toolbox Functions
Supported for Code Generation

In this section...

“Common Restrictions” on page 21-35

“Toolbox Functions with Variable Sizing Restrictions” on page 21-36

Common Restrictions
The following common restrictions apply to multiple toolbox functions, but
only for code generation. To determine which of these restrictions apply to
specific library functions, see the table in “Toolbox Functions with Variable
Sizing Restrictions” on page 21-36.

Variable-length vector restriction
Inputs to the library function must be variable-length vectors or fixed-size
vectors. A variable-length vector is a variable-size array that has the shape
1x:n or :nx1 (one dimension is variable sized and the other is fixed at size 1).
Other shapes are not permitted, even if they are vectors at run time.

Automatic dimension restriction
When the function selects the working dimension automatically, it bases the
selection on the upper bounds for the dimension sizes. In the case of the sum
function, sum(X) selects its working dimension automatically, while sum(X,
dim) uses dim as the explicit working dimension.

For example, if X is a variable-size matrix with dimensions 1x:3x:5, sum(x)
behaves like sum(X,2) in generated code. In MATLAB, it behaves like
sum(X,2) provided size(X,2) is not 1. In MATLAB, when size(X,2) is 1,
sum(X) behaves like sum(X,3). Consequently, you get a run-time error if an
automatically selected working dimension assumes a length of 1 at run time.

To avoid the issue, specify the intended working dimension explicitly as
a constant value.

21-35

21 Code Generation for Variable-Size Data

Array-to-vector restriction
The function issues an error when a variable-size array that is not a
variable-length vector assumes the shape of a vector at run time. To avoid
the issue, specify the input explicitly as a variable-length vector instead of
a variable-size array.

Array-to-scalar restriction
The function issues an error if a variable-size array assumes a scalar value at
run time. To avoid this issue, specify all scalars as fixed size.

Toolbox Functions with Variable Sizing Restrictions
The following restrictions apply to specific toolbox functions, but only for
code generation.

Function Restrictions with Variable-Size Data

all
• See “Automatic dimension restriction” on page
21-35.

• An error occurs if you pass the first argument a
variable-size matrix that is 0-by-0 at run time.

any
• See “Automatic dimension restriction” on page
21-35.

• An error occurs if you pass the first argument a
variable-size matrix that is 0-by-0 at run time.

bsxfun
• Dimensions expand only where one input array
or the other has a fixed length of 1.

cat
• Dimension argument must be a constant.

• An error occurs if variable-size inputs are
empty at run time.

21-36

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Function Restrictions with Variable-Size Data

conv
• See “Variable-length vector restriction” on page
21-35.

• Input vectors must have the same orientation,
either both row vectors or both column vectors.

cov
• For cov(X), see“Array-to-vector restriction” on
page 21-36.

cross
• Variable-size array inputs that become vectors
at run time must have the same orientation.

deconv
• For both arguments, see“Variable-length vector
restriction” on page 21-35.

detrend
• For first argument for row vectors only, see
“Array-to-vector restriction” on page 21-36 .

diag
• See “Array-to-vector restriction” on page 21-36 .

diff
• See “Automatic dimension restriction” on page
21-35.

• Length of the working dimension must be
greater than the difference order input when
the input is variable sized. For example, if the
input is a variable-size matrix that is 3-by-5 at
run time, diff(x,2,1) works but diff(x,5,1)
generates a run-time error.

fft
• See “Automatic dimension restriction” on page
21-35.

21-37

21 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

filter
• For first and second arguments, see
“Variable-length vector restriction” on page
21-35.

• See “Automatic dimension restriction” on page
21-35.

hist
• For second argument, see “Variable-length
vector restriction” on page 21-35.

• For second input argument, see“Array-to-scalar
restriction” on page 21-36.

histc
• See “Automatic dimension restriction” on page
21-35.

ifft
• See “Automatic dimension restriction” on page
21-35.

ind2sub
• First input (the size vector input) must be fixed
size.

interp1
• For the Y input and xi input, see“Array-to-vector
restriction” on page 21-36.

• Y input can become a column vector dynamically.

• A run-time error occurs if Y input is not a
variable-length vector and becomes a row vector
at run time.

ipermute
• Order input must be fixed size.

issorted
• For optional rows input, see “Variable-length
vector restriction” on page 21-35.

21-38

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Function Restrictions with Variable-Size Data

magic
• Argument must be a constant.

• Output can be fixed-size matrices only.

max
• See “Automatic dimension restriction” on page
21-35.

mean
• See “Automatic dimension restriction” on page
21-35.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

median
• See “Automatic dimension restriction” on page
21-35.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

min
• See “Automatic dimension restriction” on page
21-35.

mode
• See “Automatic dimension restriction” on page
21-35.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

21-39

21 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

mtimes
• When an input is variable sized, MATLAB
determines whether to generate code for a
general matrix*matrix multiplication or a
scalar*matrix multiplication, based on whether
one of the arguments is a fixed-size scalar. If
neither argument is a fixed-size scalar, the
inner dimensions of the two arguments must
agree even if a variable-size matrix input
happens to be a scalar at run time.

nchoosek
• Inputs must be fixed sized.

• Second input must be a constant for static
allocation. If you enable dynamic allocation,
second input can be a variable.

• You cannot create a variable-size array by
passing in a variable k unless you enable
dynamic allocation.

permute
• Order input must be fixed size.

planerot
• Input must be a fixed-size, two-element column
vector. It cannot be a variable-size array that
takes on the size 2-by-1 at run time.

poly
• See “Variable-length vector restriction” on page
21-35.

polyfit
• For first and second arguments, see
“Variable-length vector restriction” on page
21-35.

21-40

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Function Restrictions with Variable-Size Data

prod
• See “Automatic dimension restriction” on page
21-35.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

rand
• For an upper-bounded variable N, rand(1,N)
produces a variable-length vector of 1x:M where
M is the upper bound on N.

• For an upper-bounded variable N, rand([1,N])
may produce a variable-length vector of :1x:M
where M is the upper bound on N.

randn
• For an upper-bounded variable N, randn(1,N)
produces a variable-length vector of 1x:M where
M is the upper bound on N.

• For an upper-bounded variable N, randn([1,N])
may produce a variable-length vector of :1x:M
where M is the upper bound on N.

reshape
• When the input is a variable-size empty array,
the maximum dimension size of the output
array (also empty) cannot be larger than that
of the input.

roots
• See “Variable-length vector restriction” on page
21-35.

21-41

21 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

shiftdim
• If you do not supply the second argument, the
number of shifts is determined at compilation
time by the upper bounds of the dimension
sizes. Consequently, at run time the number of
shifts is always constant.

• An error occurs if the dimension that is shifted
to the first dimension has length 1 at run
time. To avoid the error, supply the number of
shifts as the second input argument (must be a
constant).

• First input argument must always have the
same number of dimensions when you supply a
positive number of shifts.

std
• See “Automatic dimension restriction” on page
21-35.

• An error occurs if you pass a variable-size
matrix with 0-by-0 dimensions at run time.

sub2ind
• First input (the size vector input) must be fixed
size.

sum
• See “Automatic dimension restriction” on page
21-35.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

trapz
• See “Automatic dimension restriction” on page
21-35.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

21-42

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Function Restrictions with Variable-Size Data

typecast
• See “Variable-length vector restriction” on page
21-35 on first argument.

var
• See “Automatic dimension restriction” on page
21-35.

• An error occurs if you pass a variable-size
matrix with 0-by-0 dimensions at run time.

21-43

21 Code Generation for Variable-Size Data

21-44

22

Primary Functions

22 Primary Functions

Primary Function Input Specification

In this section...

“When to Specify Input Properties” on page 22-2

“Why You Must Specify Input Properties” on page 22-2

“Properties to Specify” on page 22-3

“Rules for Specifying Properties of Primary Inputs” on page 22-8

“Methods for Defining Properties of Primary Inputs” on page 22-8

“Define Input Properties by Example at the Command Line” on page 22-9

“Specify Constant Inputs at the Command Line” on page 22-12

“Specify Variable-Size Inputs at the Command Line” on page 22-14

When to Specify Input Properties
If you supply a test bench for your MATLAB algorithm, you do not need to
manually specify the primary function inputs. The HDL Coder software uses
the test bench to infer the data types.

Why You Must Specify Input Properties
Because C and C++ are statically typed languages, MATLAB CoderHDL
Coder Fixed-Point Toolbox must determine the properties of all variables
in the MATLAB files at compile time. To infer variable properties in
MATLAB files, MATLAB CoderHDL CoderFixed-Point Toolbox must be able
to identify the properties of the inputs to the primary function, also known
as the top-level or entry-point function. Therefore, if your primary function
has inputs, you must specify the properties of these inputs, to MATLAB
CoderHDL CoderFixed-Point Toolbox. If your primary function has no input
parameters, MATLAB CoderHDL CoderFixed-Point Toolbox can compile your
MATLAB file without modification. You do not need to specify properties of
inputs to local functions or external functions called by the primary function.

If you use the tilde (~) character to specify unused function inputs:

22-2

Primary Function Input Specification

• In MATLAB Coder projects, if you want a different type to appear in the
generated code, specify the type. Otherwise, the inputs default to real,
scalar doubles.

• When generating code with codegen, you must specify the type of these
inputs using the -args option.

If you use the tilde (~) character to specify unused function inputs in an HDL
Coder project, and you want a different type to appear in the generated code,
specify the type. Otherwise, the inputs default to real, scalar doubles.

Properties to Specify
If your primary function has inputs, you must specify the following properties
for each input.

For... Specify properties...

Class Size Complexity numerictype fimath

Fixed-point
inputs

Each field in
a structure
input

Specify properties for each field according to its class

When a primary input is a structure, the code generation software treats each
field as a separate input. Therefore, you must specify properties for all fields of a
primary structure input in the order that they appear in the structure definition:

• For each field of input structures, specify class, size, and complexity.

• For each field that is fixed-point class, also specify numerictype, and fimath.

All other
inputs

22-3

22 Primary Functions

For... Specify properties...

Class Size Complexity numerictype fimath

Fixed-point
inputs

All other
inputs

The following data types are not supported for primary function inputs,
although you can use them within the primary function:

• structure

• matrix

Variable-size data is not supported in the test bench or the primary function.

Default Property Values
MATLAB CoderHDL CoderFixed-Point Toolbox assigns the following default
values for properties of primary function inputs.

Property Default

class double

size scalar

complexity real

numerictype No default

fimath MATLAB default fimath object

Property Default

class double

size scalar

complexity real

22-4

Primary Function Input Specification

Property Default

numerictype No default

fimath hdlfimath

Specifying Default Values for Structure Fields. In most cases, when
you don’t explicitly specify values for properties, MATLAB CoderHDL
CoderFixed-Point Toolbox uses defaults except for structure fields. The only
way to name a field in a structure is to set at least one of its properties.
Therefore, you might need to specify default values for properties of structure
fields. For examples, see “Specifying Class and Size of Scalar Structure” on
page 22-25 and “Specifying Class and Size of Structure Array” on page 22-26.

Specifying Default fimath Values for MEX Functions. MEX functions
generated with MATLAB CoderFixed-Point Toolbox use the default fimath
value in effect at compile time. If you do not specify a default fimath value,
MATLAB CoderFixed-Point Toolbox uses the MATLAB default fimath. The
MATLAB factory default has the following properties:

RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision
CastBeforeSum: true

For more information, see “fimath for Sharing Arithmetic Rules” on page 4-22.

When running MEX functions that depend on the default fimath value, do
not change this value during your MATLAB session. Otherwise, you receive
a run-time warning, alerting you to a mismatch between the compile-time
and run-time fimath values.

For example, suppose you define the following MATLAB function test:

function y = test %#codegen
y = fi(0);

The function test constructs a fi object without explicitly specifying a fimath
object. Therefore, test relies on the default fimath object in effect at compile

22-5

22 Primary Functions

time. At the MATLAB prompt, generate the MEX function text_mex to use
the factory setting of the MATLAB default fimath:

codegen test
% codegen generates a MEX function, test_mex,
% in the current folder

Next, run test_mex to display the MATLAB default fimath value:

test_mex

ans =

0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

Now create a local MATLAB fimath value. so you no longer use the default
setting:

F = fimath('RoundingMethod','Floor');

Finally, clear the MEX function from memory and rerun it:

clear test_mex
test_mex

The mismatch is detected and causes an error:

??? This function was generated with a different default
fimath than the current default.

Error in ==> test_mex

Supported Classes
The following table presents the class names supported by MATLAB
CoderHDL CoderFixed-Point Toolbox.

22-6

Primary Function Input Specification

Class Name Description

logical Logical array of true and false values

char Character array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

single Single-precision floating-point or
fixed-point number array

double Double-precision floating-point or
fixed-point number array

struct Structure array

embedded.fi Fixed-point number array

Class Name Description

logical Logical array of true and false values

char Character array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

single Single-precision floating-point or
fixed-point number array

22-7

22 Primary Functions

Class Name Description

double Double-precision floating-point or
fixed-point number array

embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs
When specifying the properties of primary inputs, follow these rules.

• You must specify the class of all primary inputs. If you do not specify the
size or complexity of primary inputs, they default to real scalars.

• For each primary function input whose class is fixed point (fi), you must
specify the input numerictype and fimath properties.

• For each primary function input whose class is struct, you must specify
the properties of each of its fields in the order that they appear in the
structure definition.

Methods for Defining Properties of Primary Inputs
Method Advantages Disadvantages

• If you are working in a MATLAB
CoderHDL Coder project, easy
to use

• Does not alter original MATLAB
code

• MATLAB CoderHDL Coder
saves the definitions in the
project file

• Not efficient for specifying
memory-intensive inputs such
as large structures and arrays

“Define Input
Properties by
Example at the
Command Line” on
page 22-9

• Easy to use

• Does not alter original MATLAB
code

• Must be specified at the
command line every time you
invoke codegen (unless you use
a script)

22-8

Primary Function Input Specification

Method Advantages Disadvantages

Note If you define
input properties
programmatically
in the MATLAB file,
you cannot use this
method

• Designed for prototyping a
function that has a small
number of primary inputs

• Not efficient for specifying
memory-intensive inputs such
as large structures and arrays

“Define Input
Properties
Programmatically
in the MATLAB File”
on page 22-16

• Integrated with MATLAB code;
no need to redefine properties
each time you invoke MATLAB
CoderHDL Coder

• Provides documentation of
property specifications in the
MATLAB code

• Efficient for specifying
memory-intensive inputs
such as large structures

• Uses complex syntax

• MATLAB CoderHDL Coder
project files do not currently
recognize properties defined
programmatically. If you are
using a project, you must
reenter the input types in the
project.

Define Input Properties by Example at the Command
Line

• “Command Line Option -args” on page 22-10

• “Rules for Using the -args Option” on page 22-10

• “Specifying Properties of Primary Inputs by Example at the Command
Line” on page 22-10

• “Specifying Properties of Primary Fixed-Point Inputs by Example at the
Command Line” on page 22-11

22-9

22 Primary Functions

Command Line Option -args
The codegen function provides a command-line option -args for specifying
the properties of primary (entry-point) function inputs as a cell array of
example values. The cell array can be a variable or literal array of constant
values. Using this option, you specify the properties of inputs at the same
time as you generate code for the MATLAB function with codegen. If you
have a test function or script that calls the entry-point MATLAB function with
the required types, you can use coder.getArgTypes to determine the types of
the function inputs. coder.getArgTypes returns a cell array of coder.Type
objects that you can pass to codegen using the -args option. For more
information, see the coder.getArgTypes function reference information.

See “Specifying General Properties of Primary Inputs” on page 22-24 for
codegen.

Rules for Using the -args Option
When using the -args command-line option to define properties by example,
follow these rules:

• The cell array of sample values must contain the same number of elements
as primary function inputs.

• The order of elements in the cell array must correspond to the order in
which inputs appear in the primary function signature — for example, the
first element in the cell array defines the properties of the first primary
function input.

Note If you specify an empty cell array with the -args option, codegen
interprets this to mean that the function takes no inputs; a compile-time error
occurs if the function does have inputs.

Specifying Properties of Primary Inputs by Example at the
Command Line
Consider a MATLAB function that adds its two inputs:

function y = mcf(u,v)
%#codegen

22-10

Primary Function Input Specification

y = u + v;

The following examples show how to specify different properties of the
primary inputs u and v by example at the command line:

• Use a literal cell array of constants to specify that both inputs are real
scalar doubles:

codegen mcf -args {0,0}

• Use a literal cell array of constants to specify that input u is an unsigned
16-bit, 1-by-4 vector and input v is a scalar double:

codegen mcf -args {zeros(1,4,'uint16'),0}

• Assign sample values to a cell array variable to specify that both inputs are
real, unsigned 8-bit integer vectors:

a = uint8([1;2;3;4])
b = uint8([5;6;7;8])
ex = {a,b}
codegen mcf -args ex

Specifying Properties of Primary Fixed-Point Inputs by
Example at the Command Line
To generate a MEX function or C/C++ code for fixed-point MATLAB code, you
must install Fixed-Point Toolbox software.

Consider a MATLAB function that calculates the square root of a fixed-point
number:

%#codegen
function y = sqrtfi(x)
y = sqrt(x);

To specify the properties of the primary fixed-point input x by example on the
MATLAB command line, follow these steps:

1 Define the numerictype properties for x, as in this example:

T = numerictype('WordLength',32,...

22-11

22 Primary Functions

'FractionLength',23,...
'Signed',true);

2 Define the fimath properties for x, as in this example:

F = fimath('SumMode','SpecifyPrecision',...
'SumWordLength',32,...
'SumFractionLength',23,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',32,...
'ProductFractionLength',23);

3 Create a fixed-point variable with the numerictype and fimath properties
you just defined, as in this example:

myeg = { fi(4.0,T,F) };

4 Compile the function sqrtfi using the codegen command, passing the
variable myeg as the argument to the -args option, as in this example:

codegen sqrtfi -args myeg;

Specify Constant Inputs at the Command Line
In cases where you know your primary inputs will not change at run time,
it is more efficient to specify them as constant values than as variables to
eliminate unnecessary overhead in generated code. Common uses of constant
inputs are for flags that control how an algorithm executes and values that
specify the sizes or types of data.

You can define inputs to be constants using the -args command-line option
with a coder.Constant object, as in this example:

-args {coder.Constant(constant_input)}

This expression specifies that an input will be a constant with the size, class,
complexity, and value of constant_input.

Calling Functions with Constant Inputs
codegen compiles constant function inputs into the generated code. As
a result, the MEX function signature differs from the MATLAB function

22-12

Primary Function Input Specification

signature. At run time you supply the constant argument to the MATLAB
function, but not to the MEX function.

For example, consider the following function identity which copies its input
to its output:

function y = identity(u) %#codegen
y = u;

To generate a MEX function identity_mex with a constant input, at the
MATLAB prompt, type the following command:

codegen identity -args {coder.Constant(42)}

To run the MATLAB function, supply the constant argument:

identity(42)

You get the following result:

ans =

42

Now, try running the MEX function with this command:

identity_mex

You should get the same answer.

Specifying a Structure as a Constant Input
Suppose you define a structure tmp in the MATLAB workspace to specify
the dimensions of a matrix:

tmp = struct('rows', 2, 'cols', 3);

The following MATLAB function rowcol accepts a structure input p to define
matrix y:

function y = rowcol(u,p) %#codegen
y = zeros(p.rows,p.cols) + u;

22-13

22 Primary Functions

The following example shows how to specify that primary input u is a double
scalar variable and primary input p is a constant structure:

codegen rowcol -args {0,coder.Constant(tmp)}

Specify Variable-Size Inputs at the Command Line
Variable-size data is data whose size might change at run time. MATLAB
supports bounded and unbounded variable-size data for code generation.
Bounded variable-size data has fixed upper bounds. This data can be allocated
statically on the stack or dynamically on the heap. Unbounded variable-size
data does not have fixed upper bounds. This data must be allocated on the
heap. You can define inputs to have one or more variable-size dimensions —
and specify their upper bounds — using the -args option and coder.typeof
function:

-args {coder.typeof(example_value, size_vector, variable_dims}

Specifies a variable-size input with:

• Same class and complexity as example_value

• Same size and upper bounds as size_vector

• Variable dimensions specified by variable_dims

When you enable dynamic memory allocation, you can specify Inf in the size
vector for dimensions with unknown upper bounds at compile time.

When variable_dims is a scalar, it is applied to all the dimensions, with the
following exceptions:

• If the dimension is 1 or 0, which are fixed.

• If the dimension is unbounded, which is always variable size.

For more information, see coder.typeof and .

Specifying a Variable-Size Vector Input

1 Write a function that computes the average of every n elements of a vector
A and stores them in a vector B:

22-14

Primary Function Input Specification

function B = nway(A,n) %#codegen
% Compute average of every N elements of A and put them in B.

coder.extrinsic('error');
if ((mod(numel(A),n) == 0) && (n>=1 && n<=numel(A)))

B = ones(1,numel(A)/n);
k = 1;
for i = 1 : numel(A)/n

B(i) = mean(A(k + (0:n-1)));
k = k + n;

end
else

B = zeros(1,0);
error('n <= 0 or does not divide number of elements evenly');

end

2 Specify the first input A as a vector of double values. Its first dimension
stays fixed in size and its second dimension can grow to an upper bound of
100. Specify the second input n as a double scalar.

codegen -report nway -args {coder.typeof(0,[1 100],1),1}

3 As an alternative, assign the coder.typeof expression to a MATLAB
variable, then pass the variable as an argument to -args:

vareg = coder.typeof(0,[1 100],1)
codegen -report nway -args {vareg, 0}

22-15

22 Primary Functions

Define Input Properties Programmatically in the MATLAB
File

With MATLAB Coder, you use the MATLAB assert function to define
properties of primary function inputs directly in your MATLAB file.

In this section...

“How to Use assert with MATLAB® Coder™” on page 22-16

“Rules for Using assert Function” on page 22-23

“Specifying General Properties of Primary Inputs” on page 22-24

“Specifying Properties of Primary Fixed-Point Inputs” on page 22-25

“Specifying Class and Size of Scalar Structure” on page 22-25

“Specifying Class and Size of Structure Array” on page 22-26

How to Use assert with MATLAB Coder
Use the assert function to invoke standard MATLAB functions for specifying
the class, size, and complexity of primary function inputs.

You must use one of the following methods when specifying input properties
using the assert function. Use the exact syntax that is provided; do not
modify it.

• “Specify Any Class” on page 22-17

• “Specify fi Class” on page 22-17

• “Specify Structure Class” on page 22-18

• “Specify Fixed Size” on page 22-18

• “Specify Scalar Size” on page 22-19

• “Specify Upper Bounds for Variable-Size Inputs” on page 22-19

• “Specify Inputs with Fixed- and Variable-Size Dimensions” on page 22-19

• “Specify Size of Individual Dimensions” on page 22-20

• “Specify Real Input” on page 22-21

22-16

Define Input Properties Programmatically in the MATLAB® File

• “Specify Complex Input” on page 22-21

• “Specify numerictype of Fixed-Point Input” on page 22-21

• “Specify fimath of Fixed-Point Input” on page 22-22

• “Specify Multiple Properties of Input” on page 22-22

Specify Any Class

assert (isa (param, 'class_name'))

Sets the input parameter param to the MATLAB class class_name. For
example, to set the class of input U to a 32-bit signed integer, call:

...
assert(isa(U,'int32'));
...

If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 22-21.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 22-22. If you do not set the fimath properties, codegen uses
the MATLAB default fimath value.

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order that they appear in the structure definition.

Specify fi Class

assert (isfi (param))
assert (isa (param, 'embedded.fi'))

Sets the input parameter param to the MATLAB class fi (fixed-point numeric
object). For example, to set the class of input U to fi, call:

...
assert(isfi(U));
...

or

22-17

22 Primary Functions

...
assert(isa(U,'embedded.fi'));
...

If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 22-21.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 22-22. If you do not set the fimath properties, codegen uses
the MATLAB default fimath value.

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order they appear in the structure definition.

Specify Structure Class

assert (isstruct (param))
assert (isa (param, 'struct'))

Sets the input parameter param to the MATLAB class struct (structure). For
example, to set the class of input U to a struct, call:

...
assert(isstruct(U));
...

or

...
assert(isa(U, 'struct'));
...

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order they appear in the structure definition.

Specify Fixed Size

assert (all (size (param) == [dims]))

Sets the input parameter param to the size specified by dimensions dims. For
example, to set the size of input U to a 3-by-2 matrix, call:

22-18

Define Input Properties Programmatically in the MATLAB® File

...
assert(all(size(U)== [3 2]));
...

Specify Scalar Size

assert (isscalar (param))
assert (all (size (param) == [1]))

Sets the size of input parameter param to scalar. To set the size of input
U to scalar, call:

...
assert(isscalar(U));
...

or

...
assert(all(size(U)== [1]));
...

Specify Upper Bounds for Variable-Size Inputs

assert (all(size(param)<=[N0 N1 ...]));
assert (all(size(param)<[N0 N1 ...]));

Sets the upper-bound size of each dimension of input parameter param. To set
the upper-bound size of input U to be less than or equal to a 3-by-2 matrix, call:

assert(all(size(U)<=[3 2]));

Note You can also specify upper bounds for variable-size inputs using
coder.varsizecoder.varsizecoder.varsize.

Specify Inputs with Fixed- and Variable-Size Dimensions

assert (all(size(param)>=[M0 M1 ...]));

22-19

22 Primary Functions

assert (all(size(param)<=[N0 N1 ...]));

When you use assert(all(size(param)>=[M0 M1 ...])) to specify the
lower-bound size of each dimension of an input parameter:

• You must also specify an upper-bound size for each dimension of the input
parameter.

• For each dimension, k, the lower-bound Mk must be less than or equal to
the upper-bound Nk.

• To specify a fixed-size dimension, set the lower and upper bound of a
dimension to the same value.

• Bounds must be non-negative.

To fix the size of the first dimension of input U to 3 and set the second
dimension as variable size with upper-bound of 2, call:

assert(all(size(U)>=[3 0]));
assert(all(size(U)<=[3 2]));

Specify Size of Individual Dimensions

assert (size(param, k)==Nk);
assert (size(param, k)<=Nk);
assert (size(param, k)<Nk);

You can specify individual dimensions as well as specifying all dimensions
simultaneously or instead of specifying all dimensions simultaneously. The
following rules apply:

• You must specify the size of each dimension at least once.

• The last dimension specification takes precedence over earlier
specifications.

Sets the upper-bound size of dimension k of input parameter param. To set
the upper-bound size of the first dimension of input U to 3, call:

assert(size(U,1)<=3)

22-20

Define Input Properties Programmatically in the MATLAB® File

To fix the size of the second dimension of input U to 2, call:

assert(size(U,2)==2)

Specify Real Input

assert (isreal (param))

Specifies that the input parameter param is real. To specify that input U is
real, call:

...
assert(isreal(U));
...

Specify Complex Input

assert (~isreal (param))

Specifies that the input parameter param is complex. To specify that input U
is complex, call:

...
assert(~isreal(U));
...

Specify numerictype of Fixed-Point Input

assert (isequal (numerictype (fiparam), T))

Sets the numerictype properties of fi input parameter fiparam to the
numerictype object T. For example, to specify the numerictype property of
fixed-point input U as a signed numerictype object T with 32-bit word length
and 30-bit fraction length, use the following code:

%#codegen
...
% Define the numerictype object.

22-21

22 Primary Functions

T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.
assert(isequal(numerictype(U),T));
...

Specify fimath of Fixed-Point Input

assert (isequal (fimath (fiparam), F))

Sets the fimath properties of fi input parameter fiparam to the fimath
object F. For example, to specify the fimath property of fixed-point input U so
that it saturates on integer overflow, use the following code:

%#codegen
...
% Define the fimath object.
F = fimath('OverflowMode','saturate');

% Set the fimath property of input U to F.
assert(isequal(fimath(U),F));
...

If you do not specify the fimath properties using assert, codegen uses the
MATLAB default fimath value.

Specify Multiple Properties of Input

assert (function1 (params) &&
function2 (params) &&
function3 (params) && ...)

Specifies the class, size, and complexity of one or more inputs using a single
assert function call. For example, the following code specifies that input U is
a double, complex, 3-by-3 matrix, and input V is a 16-bit unsigned integer:

%#codegen
...
assert(isa(U,'double') &&

~isreal(U) &&

22-22

Define Input Properties Programmatically in the MATLAB® File

all(size(U) == [3 3]) &&
isa(V,'uint16'));

...

Rules for Using assert Function
When using the assert function to specify the properties of primary function
inputs, follow these rules:

• Call assert functions at the beginning of the primary function, before any
control-flow operations such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for,
while, and switch statements.

• Use the assert function with MATLAB Coder only for specifying properties
of primary function inputs before converting your MATLAB code to C/C++
code.

• If you set the class of an input parameter to fi, you must also set its
numerictype. See “Specify numerictype of Fixed-Point Input” on page
22-21. You can also set its fimath properties. See “Specify fimath of
Fixed-Point Input” on page 22-22. If you do not set the fimath properties,
codegen uses the MATLAB default fimath value.

• If you set the class of an input parameter to struct, you must specify the
class, size, and complexity of all fields in the order that they appear in the
structure definition.

• When you use assert(all(size(param)>=[M0 M1 ...])) to specify the
lower-bound size of each dimension of an input parameter:

- You must also specify an upper-bound size for each dimension of the
input parameter.

- For each dimension, k, the lower-bound Mk must be less than or equal to
the upper-bound Nk.

- To specify a fixed-size dimension, set the lower and upper bound of a
dimension to the same value.

- Bounds must be non-negative.

• If you specify individual dimensions, the following rules apply:

- You must specify the size of each dimension at least once.

22-23

22 Primary Functions

- The last dimension specification takes precedence over earlier
specifications.

Specifying General Properties of Primary Inputs
In the following code excerpt, a primary MATLAB function mcspecgram
takes two inputs: pennywhistle and win. The code specifies the following
properties for these inputs:

Input Property Value

class int16

size 220500-by-1 vector

pennywhistle

complexity real (by default)

class double

size 1024-by-1 vector

win

complexity real (by default)

%#codegen
function y = mcspecgram(pennywhistle,win)
nx = 220500;
nfft = 1024;
assert(isa(pennywhistle,'int16'));
assert(all(size(pennywhistle) == [nx 1]));
assert(isa(win, 'double'));
assert(all(size(win) == [nfft 1]));
...

Alternatively, you can combine property specifications for one or more inputs
inside assert commands:

%#codegen

function y = mcspecgram(pennywhistle,win)

nx = 220500;

nfft = 1024;

assert(isa(pennywhistle,'int16') && all(size(pennywhistle) == [nx 1]));

assert(isa(win, 'double') && all(size(win) == [nfft 1]));

...

22-24

Define Input Properties Programmatically in the MATLAB® File

Specifying Properties of Primary Fixed-Point Inputs
To specify fixed-point inputs, you must install Fixed-Point Toolbox software.

In the following example, the primary MATLAB function mcsqrtfi takes one
fixed-point input x. The code specifies the following properties for this input.

Property Value

class fi

numerictype numerictype object T, as specified in the
primary function

fimath fimath object F, as specified in the primary
function

size scalar

complexity real (by default)

function y = mcsqrtfi(x) %#codegen
T = numerictype('WordLength',32,'FractionLength',23,...

'Signed',true);
F = fimath('SumMode','SpecifyPrecision',...

'SumWordLength',32,'SumFractionLength',23,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',32,'ProductFractionLength',23);

assert(isfi(x));
assert(isequal(numerictype(x),T));
assert(isequal(fimath(x),F));

y = sqrt(x);

Specifying Class and Size of Scalar Structure
Assume you have defined S as the following scalar MATLAB structure:

S = struct('r',double(1),'i',int8(4));

Here is code that specifies the class and size of S and its fields when passed as
an input to your MATLAB function:

%#codegen

22-25

22 Primary Functions

function y = fcn(S)

% Specify the class of the input as struct.
assert(isstruct(S));

% Specify the class and size of the fields r and i
% in the order in which you defined them.
assert(isa(S.r,'double'));
assert(isa(S.i,'int8');
...

In most cases, when you don’t explicitly specify values for properties,
MATLAB Coder uses defaults — except for structure fields. The only way
to name a field in a structure is to set at least one of its properties. As a
minimum, you must specify the class of a structure field

Specifying Class and Size of Structure Array
For structure arrays, you must choose a representative element of the array
for specifying the properties of each field. For example, assume you have
defined S as the following 2-by-2 array of MATLAB structures:

S = struct('r',{double(1), double(2)},'i',{int8(4), int8(5)});

The following code specifies the class and size of each field of structure input S
using the first element of the array:

%#codegen
function y = fcn(S)

% Specify the class of the input S as struct.
assert(isstruct(S));

% Specify the size of the fields r and i
% based on the first element of the array.
assert(all(size(S) == [2 2]));
assert(isa(S(1).r,'double'));
assert(isa(S(1).i,'int8'));

The only way to name a field in a structure is to set at least one of its
properties. As a minimum, you must specify the class of all fields.

22-26

23

Checking Code is Suitable
for Code Generation

23 Checking Code is Suitable for Code Generation

Check Code Using the MATLAB Code Analyzer
The code analyzer checks your code for problems and recommends
modifications to maximize performance and maintainability. You can use
the code analyzer to check your code interactively in the MATLAB Editor
while you work.

To verify that continuous code checking is enabled:

1 In MATLAB, select the Home tab and then click Preferences.

2 In the Preferences dialog box, select Code Analyzer.

3 In the Code Analyzer Preferences pane, verify that Enable integrated
warning and error messages is selected.

23-2

Fix Errors Detected at Code Generation Time

Fix Errors Detected at Code Generation Time
When the code generation software detects errors or warnings, it
automatically generates an error report. The error report describes the issues
and provides links to the MATLAB code with errors.

To fix the errors, modify your MATLAB code to use only those MATLAB
features that are supported for code generation. For more information, see
“MATLAB Algorithm Design Basics”“Algorithm Design Basics”. Choose a
debugging strategy for detecting and correcting code generation errors in your
MATLAB code. For more information, see “Debugging Strategies” on page
8-25.

When code generation is complete, the software generates a MEX function
that you can use to test your implementation in MATLAB.

If your MATLAB code calls functions on the MATLAB path, unless the code
generation software determines that these functions should be extrinsic or
you declare them to be extrinsic, it attempts to compile these functions. See
“Resolution of Function Calls in MATLAB Generated Code”“Resolution of
Function Calls in MATLAB Generated Code” on page 10-2. To get detailed
diagnostics, add the %#codegen directive to each external function that you
want codegen to compile.

See Also

• “Create and Use Fixed-Point Code Generation Reports” on page 8-52

•

• “When to Generate Code from MATLAB Algorithms”“When to Generate
Code from MATLAB Algorithms” on page 15-2

• “Debugging Strategies” on page 8-25

• “Declaring MATLAB Functions as Extrinsic Functions”“Declaring
MATLAB Functions as Extrinsic Functions” on page 10-12

23-3

23 Checking Code is Suitable for Code Generation

23-4

24

System Objects Supported
for Code Generation

24 System Objects Supported for Code Generation

System Objects Supported for Code Generation

In this section...

“Code Generation for System Objects” on page 24-2

“Computer Vision System Toolbox System Objects” on page 24-2

“Communications System Toolbox System Objects” on page 24-7

“DSP System Toolbox System Objects” on page 24-13

Code Generation for System Objects
You can generate C/C++ code for a subset of System objects provided by
Communications System Toolbox, DSP System Toolbox, and Computer Vision
System Toolbox. To use these System objects, you need to install the requisite
toolbox.

System objects are MATLAB object-oriented implementations of algorithms.
They extend MATLAB by enabling you to model dynamic systems represented
by time-varying algorithms. System objects are well integrated into the
MATLAB language, regardless of whether you are writing simple functions,
working interactively in the command window, or creating large applications.

In contrast to MATLAB functions, System objects automatically manage
state information, data indexing, and buffering, which is particularly useful
for iterative computations or stream data processing. This enables efficient
processing of long data sets. For general information on MATLAB objects,
see “Begin Using Object-Oriented Programming”.

Computer Vision System Toolbox System Objects
If you install Computer Vision System Toolbox software, you can generate
C/C++ code for the following Computer Vision System Toolbox System objects.
For more information on how to use these System objects, see “Use System
Objects in MATLAB Code Generation”.

24-2

System Objects Supported for Code Generation

Supported Computer Vision System Toolbox System Objects

Object Description

Analysis & Enhancement

vision.BoundaryTracer Trace object boundaries in binary images

vision.ContrastAdjuster Adjust image contrast by linear scaling

vision.Deinterlacer Remove motion artifacts by deinterlacing input
video signal

vision.EdgeDetector Find edges of objects in images

vision.ForegroundDetector Detect foreground using Gaussian Mixture
Models. This object supports tunable properties
in code generation.

vision.HistogramEqualizer Enhance contrast of images using histogram
equalization

vision.TemplateMatcher Perform template matching by shifting
template over image

Conversions

vision.Autothresholder Convert intensity image to binary image

vision.ChromaResampler Downsample or upsample chrominance
components of images

vision.ColorSpaceConverter Convert color information between color spaces

vision.DemosaicInterpolator Demosaic Bayer’s format images

vision.GammaCorrector Apply or remove gamma correction from
images or video streams

vision.ImageComplementer Compute complement of pixel values in binary,
intensity, or RGB images

vision.ImageDataTypeConverter Convert and scale input image to specified
output data type

Feature Detection, Extraction, and Matching

24-3

24 System Objects Supported for Code Generation

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.CornerDetector Corner metric matrix and corner detector.
This object supports tunable properties in code
generation.

Filtering

vision.Convolver Compute 2-D discrete convolution of two input
matrices

vision.ImageFilter Perform 2-D FIR filtering of input matrix

vision.MedianFilter 2D median filtering

Geometric Transformations

vision.GeometricRotator Rotate image by specified angle

vision.GeometricScaler Enlarge or shrink image size

vision.GeometricShearer Shift rows or columns of image by linearly
varying offset

vision.GeometricTransformer Apply projective or affine transformation to an
image

vision.GeometricTransformEstimator Estimate geometric transformation from
matching point pairs

vision.GeometricTranslator Translate image in two-dimensional plane
using displacement vector

Morphological Operations

vision.ConnectedComponentLabeler Label and count the connected regions in a
binary image

vision.MorphologicalClose Perform morphological closing on image

vision.MorphologicalDilate Perform morphological dilation on an image

vision.MorphologicalErode Perform morphological erosion on an image

24-4

System Objects Supported for Code Generation

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.MorphologicalOpen Perform morphological opening on an image

Object Detection

vision.HistogramBasedTracker Track object in video based on histogram. This
object supports tunable properties in code
generation.

Sinks

vision.DeployableVideoPlayer Send video data to computer screen

vision.VideoFileWriter Write video frames and audio samples to
multimedia file

Sources

vision.VideoFileReader Read video frames and audio samples from
compressed multimedia file

Statistics

vision.Autocorrelator Compute 2-D autocorrelation of input matrix

vision.BlobAnalysis Compute statistics for connected regions in a
binary image

vision.Crosscorrelator Compute 2-D cross-correlation of two input
matrices

vision.Histogram Generate histogram of each input matrix. This
object has no tunable properties.

vision.LocalMaximaFinder Find local maxima in matrices

vision.Maximum Find maximum values in input or sequence of
inputs

24-5

24 System Objects Supported for Code Generation

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.Mean Find mean value of input or sequence of inputs

vision.Median Find median values in an input

vision.Minimum Find minimum values in input or sequence of
inputs

vision.PSNR Compute peak signal-to-noise ratio (PSNR)
between images

vision.StandardDeviation Find standard deviation of input or sequence
of inputs

vision.Variance Find variance values in an input or sequence
of inputs

Text & Graphics

vision.AlphaBlender Combine images, overlay images, or highlight
selected pixels

vision.MarkerInserter Draw markers on output image

vision.ShapeInserter Draw rectangles, lines, polygons, or circles on
images

vision.TextInserter Draw text on image or video stream

Transforms

vision.DCT Compute 2-D discrete cosine transform

vision.FFT Two-dimensional discrete Fourier transform

vision.HoughLines Find Cartesian coordinates of lines that are
described by rho and theta pairs

vision.HoughTransform Find lines in images via Hough transform

vision.IDCT Compute 2-D inverse discrete cosine transform

vision.IFFT Two–dimensional inverse discrete Fourier
transform

vision.Pyramid Perform Gaussian pyramid decomposition

24-6

System Objects Supported for Code Generation

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

Utilities

vision.ImagePadder Pad or crop input image along its rows,
columns, or both

Communications System Toolbox System Objects
If you install Communications System Toolbox software, you can generate
C/C++ code for the following Communications System Toolbox System objects.
For information on how to use these System objects, see “Code Generation
with System Objects”.

Supported Communications System Toolbox System Objects

Object Description

Source Coding

comm.DifferentialDecoder Decode binary signal using differential decoding

comm.DifferentialEncoder Encode binary signal using differential coding

Channels

comm.AWGNChannel Add white Gaussian noise to input signal

comm.LTEMIMOChannel Filter input signal through LTE MIMO multipath
fading channel

comm.MIMOChannel Filter input signal through MIMO multipath fading
channel

comm.BinarySymmetricChannel Introduce binary errors

Equalizers

comm.MLSEEqualizer Equalize using maximum likelihood sequence
estimation

Filters

comm.IntegrateAndDumpFilter Integrate discrete-time signal with periodic resets

24-7

24 System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

Measurements

comm.ACPR Measure adjacent channel power ratio

comm.CCDF Measure complementary cumulative distribution
function

comm.EVM Measure error vector magnitude

comm.MER Measure modulation error ratio

Sources

comm.BarkerCode Generate Barker code

comm.HadamardCode Generate Hadamard code

comm.KasamiSequence Generate a Kasami sequence

comm.OVSFCode Generate OVSF code

comm.PNSequence Generate a pseudo-noise (PN) sequence

comm.WalshCode Generate Walsh code from orthogonal set of codes

Error Detection and Correction – Block Coding

comm.BCHDecoder Decode data using BCH decoder

comm.BCHEncoder Encode data using BCH encoder

comm.LDPCDecoder Decode binary low-density parity-check code

comm.LDPCEncoder Encode binary low-density parity-check code

comm.RSDecoder Decode data using Reed-Solomon decoder

comm.RSEncoder Encode data using Reed-Solomon encoder

Error Detection and Correction – Convolutional Coding

comm.ConvolutionalEncoder Convolutionally encode binary data

comm.ViterbiDecoder Decode convolutionally encoded data using Viterbi
algorithm

Error Detection and Correction – Cyclic Redundancy Check Coding

24-8

System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.CRCDetector Detect errors in input data using cyclic redundancy
code

comm.CRCGenerator Generate cyclic redundancy code bits and append to
input data

comm.HDLCRCGenerator Generate CRC code bits and append to input data,
optimized for HDL code generation

comm.TurboDecoder Decode input signal using parallel concatenated
decoding scheme

comm.TurboEncoder Encode input signal using parallel concatenated
encoding scheme

Interleavers – Block

comm.AlgebraicDeinterleaver Deinterleave input symbols using algebraically
derived permutation vector

comm.AlgebraicInterleaver Permute input symbols using an algebraically
derived permutation vector

comm.BlockDeinterleaver Deinterleave input symbols using permutation
vector

comm.BlockInterleaver Permute input symbols using a permutation vector

comm.MatrixDeinterleaver Deinterleave input symbols using permutation
matrix

comm.MatrixInterleaver Permute input symbols using permutation matrix

comm.MatrixHelicalScanDeinterleaver Deinterleave input symbols by filling a matrix along
diagonals

comm.MatrixHelicalScanInterleaver Permute input symbols by selecting matrix elements
along diagonals

Interleavers – Convolutional

comm.ConvolutionalDeinterleaver Restore ordering of symbols using shift registers

comm.ConvolutionalInterleaver Permute input symbols using shift registers

24-9

24 System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.HelicalDeinterleaver Restore ordering of symbols using a helical array

comm.HelicalInterleaver Permute input symbols using a helical array

comm.MultiplexedDeinterleaver Restore ordering of symbols using a set of shift
registers with specified delays

comm.MultiplexedInterleaver Permute input symbols using a set of shift registers
with specified delays

MIMO

comm.OSTBCCombiner Combine inputs using orthogonal space-time block
code

comm.OSTBCEncoder Encode input message using orthogonal space-time
block code

Digital Baseband Modulation – Phase

comm.BPSKDemodulator Demodulate using binary PSK method

comm.BPSKModulator Modulate using binary PSK method

comm.DBPSKModulator Modulate using differential binary PSK method

comm.DPSKDemodulator Demodulate using M-ary DPSK method

comm.DPSKModulator Modulate using M-ary DPSK method

comm.DQPSKDemodulator Demodulate using differential quadrature PSK
method

comm.DQPSKModulator Modulate using differential quadrature PSK method

comm.DBPSKDemodulator Demodulate using M-ary DPSK method

comm.QPSKDemodulator Demodulate using quadrature PSK method

comm.QPSKModulator Modulate using quadrature PSK method

comm.PSKDemodulator Demodulate using M-ary PSK method

comm.PSKModulator Modulate using M-ary PSK method

comm.OQPSKDemodulator Demodulate offset quadrature PSK modulated data

24-10

System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.OQPSKModulator Modulate using offset quadrature PSK method

Digital Baseband Modulation – Amplitude

comm.GeneralQAMDemodulator Demodulate using arbitrary QAM constellation.
This object has no tunable properties in code
generation.

comm.GeneralQAMModulator Modulate using arbitrary QAM constellation

comm.PAMDemodulator Demodulate using M-ary PAM method

comm.PAMModulator Modulate using M-ary PAM method

comm.RectangularQAMDemodulator Demodulate using rectangular QAM method

comm.RectangularQAMModulator Modulate using rectangular QAM method

Digital Baseband Modulation – Frequency

comm.FSKDemodulator Demodulate using M-ary FSK method

comm.FSKModulator Modulate using M-ary FSK method

Digital Baseband Modulation – Trelllis Coded

comm.GeneralQAMTCMDemodulator Demodulate convolutionally encoded data mapped
to arbitrary QAM constellation

comm.GeneralQAMTCMModulator Convolutionally encode binary data and map using
arbitrary QAM constellation

comm.PSKTCMDemodulator Demodulate convolutionally encoded data mapped
to M-ary PSK constellation

comm.PSKTCMModulator Convolutionally encode binary data and map using
M-ary PSK constellation

comm.RectangularQAMTCMDemodulator Demodulate convolutionally encoded data mapped
to rectangular QAM constellation

comm.RectangularQAMTCMModulator Convolutionally encode binary data and map using
rectangular QAM constellation

Digital Baseband Modulation – Continuous Phase

24-11

24 System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.CPFSKDemodulator Demodulate using CPFSK method and Viterbi
algorithm

comm.CPFSKModulator Modulate using CPFSK method

comm.CPMDemodulator Demodulate using CPM method and Viterbi
algorithm

comm.CPMModulator Modulate using CPM method

comm.GMSKDemodulator Demodulate using GMSK method and the Viterbi
algorithm

comm.GMSKModulator Modulate using GMSK method

comm.MSKDemodulator Demodulate using MSK method and the Viterbi
algorithm

comm.MSKModulator Modulate using MSK method

RF Impairments

comm.MemorylessNonlinearity Apply memoryless nonlinearity to input signal

comm.PhaseFrequencyOffset Apply phase and frequency offsets to input signal.
The PhaseOffset property of this object is not
tunable in code generation.

comm.PhaseNoise Apply phase noise to complex baseband signal

comm.ThermalNoise Add receiver thermal noise

Synchronization – Timing Phase

comm.EarlyLateGateTimingSynchronizer Recover symbol timing phase using early-late gate
method

comm.GardnerTimingSynchronizer Recover symbol timing phase using Gardner’s
method

comm.GMSKTimingSynchronizer Recover symbol timing phase using fourth-order
nonlinearity method

comm.MSKTimingSynchronizer Recover symbol timing phase using fourth-order
nonlinearity method

24-12

System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.MuellerMullerTimingSynchronizer Recover symbol timing phase using Mueller-Muller
method

Synchronization Utilities

comm.CPMCarrierPhaseSynchronizer Recover carrier phase of baseband CPM signal

comm.DiscreteTimeVCO Generate variable frequency sinusoid

Converters

comm.BitToInteger Convert vector of bits to vector of integers

comm.IntegerToBit Convert vector of integers to vector of bits

Sequence Operators

comm.Descrambler Descramble input signal

comm.GoldSequence Generate Gold sequence

comm.Scrambler Scramble input signal

DSP System Toolbox System Objects
If you install DSP System Toolbox software, you can generate C/C++ code for
the following DSP System Toolbox System objects. For information on how to
use these System objects, see “Code Generation with System Objects”.

Supported DSP System Toolbox System Objects

Object Description

Estimation

dsp.BurgAREstimator Compute estimate of autoregressive model parameters
using Burg method

24-13

24 System Objects Supported for Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.BurgSpectrumEstimator Compute parametric spectral estimate using Burg
method

dsp.CepstralToLPC Convert cepstral coefficients to linear prediction
coefficients

dsp.LevinsonSolver Solve linear system of equations using
Levinson-Durbin recursion

dsp.LPCToAutocorrelation Convert linear prediction coefficients to autocorrelation
coefficients

dsp.LPCToCepstral Convert linear prediction coefficients to cepstral
coefficients

dsp.LPCToLSF Convert linear prediction coefficients to line spectral
frequencies

dsp.LPCToLSP Convert linear prediction coefficients to line spectral
pairs

dsp.LPCToRC Convert linear prediction coefficients to reflection
coefficients

dsp.LSFToLPC Convert line spectral frequencies to linear prediction
coefficients

dsp.LSPToLPC Convert line spectral pairs to linear prediction
coefficients

dsp.RCToAutocorrelation Convert reflection coefficients to autocorrelation
coefficients

dsp.RCToLPC Convert reflection coefficients to linear prediction
coefficients

Filters

dsp.AllpoleFilter IIR Filter with no zeros. Only the Denominator
property is tunable for code generation.

dsp.BiquadFilter Model biquadratic IIR (SOS) filters

24-14

System Objects Supported for Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.CICDecimator Decimate input using Cascaded Integrator-Comb filter

dsp.CICInterpolator Interpolate signal using Cascaded Integrator-Comb
filter

dsp.DigitalFilter Filter each channel of input over time using
discrete-time filter implementations. The SOSMatrix
and ScaleValues properties at not supported for code
generation.

dsp.FIRDecimator Filter and downsample input signals

dsp.FIRFilter Static or time-varying FIR filter. Only the Numerator
property is tunable for code generation.

dsp.FIRInterpolator Upsample and filter input signals

dsp.FIRRateConverter Upsample, filter and downsample input signals

dsp.IIRFilter Infinite Impulse Response (IIR) filter. Only the
Numerator and Denominator properties are tunable
for code generation.

dsp.LMSFilter Compute output, error, and weights using LMS
adaptive algorithm

Math Operations

dsp.ArrayVectorAdder Add vector to array along specified dimension

dsp.ArrayVectorDivider Divide array by vector along specified dimension

dsp.ArrayVectorMultiplier Multiply array by vector along specified dimension

dsp.ArrayVectorSubtractor Subtract vector from array along specified dimension

dsp.CumulativeProduct Compute cumulative product of channel, column, or
row elements

dsp.CumulativeSum Compute cumulative sum of channel, column, or row
elements

24-15

24 System Objects Supported for Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.LDLFactor Factor square Hermitian positive definite matrices
into lower, upper, and diagonal components

dsp.LevinsonSolver Solve linear system of equations using
Levinson-Durbin recursion

dsp.LowerTriangularSolver Solve LX = B for X when L is lower triangular matrix

dsp.LUFactor Factor square matrix into lower and upper triangular
matrices

dsp.Normalizer Normalize input

dsp.UpperTriangularSolver Solve UX = B for X when U is upper triangular matrix

Quantizers

dsp.ScalarQuantizerDecoder Convert each index value into quantized output value

dsp.ScalarQuantizerEncoder Perform scalar quantization encoding

dsp.VectorQuantizerDecoder Find vector quantizer codeword for given index value

dsp.VectorQuantizerEncoder Perform vector quantization encoding

Signal Management

dsp.Counter Count up or down through specified range of numbers

dsp.DelayLine Rebuffer sequence of inputs with one-sample shift

Signal Operations

dsp.Convolver Compute convolution of two inputs

dsp.Delay Delay input by specified number of samples or frames

dsp.Interpolator Interpolate values of real input samples

dsp.NCO Generate real or complex sinusoidal signals

dsp.PeakFinder Determine extrema (maxima or minima) in input
signal

dsp.PhaseUnwrapper Unwrap signal phase

24-16

System Objects Supported for Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.VariableFractionalDelay Delay input by time-varying fractional number of
sample periods

dsp.VariableIntegerDelay Delay input by time-varying integer number of sample
periods

dsp.Window Generate or apply window function. This object has no
tunable properties for code generation.

dsp.ZeroCrossingDetector Calculate number of zero crossings of a signal

Sinks

dsp.AudioPlayer Write audio data to computer’s audio device

dsp.AudioFileWriter Write audio file

dsp.UDPSender Send UDP packets to the network

Sources

dsp.AudioFileReader Read audio samples from an audio file

dsp.AudioRecorder Read audio data from computer’s audio device

dsp.SignalSource Import variable from workspace

dsp.SineWave Generate discrete sine wave. This object has no
tunable properties for code generation.

dsp.UDPReceiver Receive UDP packets from the network

Statistics

dsp.Autocorrelator Compute autocorrelation of vector inputs

dsp.Crosscorrelator Compute cross-correlation of two inputs

dsp.Histogram Output histogram of an input or sequence of inputs.
This object has no tunable properties for code
generation.

dsp.Maximum Compute maximum value in input

dsp.Mean Compute average or mean value in input

24-17

24 System Objects Supported for Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.Median Compute median value in input

dsp.Minimum Compute minimum value in input

dsp.RMS Compute root-mean-square of vector elements

dsp.StandardDeviation Compute standard deviation of vector elements

dsp.Variance Compute variance of input or sequence of inputs

Transforms

dsp.AnalyticSignal Compute analytic signals of discrete-time inputs

dsp.DCT Compute discrete cosine transform (DCT) of input

dsp.FFT Compute fast Fourier transform (FFT) of input

dsp.IDCT Compute inverse discrete cosine transform (IDCT) of
input

dsp.IFFT Compute inverse fast Fourier transform (IFFT) of
input

24-18

25

System Objects

• “Create System Objects” on page 25-2

• “Set Up System Objects” on page 25-6

• “Process Data Using System Objects” on page 25-11

• “Tuning System object Properties in MATLAB” on page 25-16

• “Find Help and Examples for System Objects” on page 25-19

• “Use System Objects in MATLAB Code Generation” on page 25-21

25 System Objects

Create System Objects

In this section...

“Create a System object” on page 25-3

“Define a New System object” on page 25-3

“Change a System object Property” on page 25-4

“Check if a System object Property Has Changed” on page 25-4

“Run a System object” on page 25-4

“Display Available System Objects” on page 25-5

A System object™ is aMATLAB object-oriented implementation of an
algorithm. System objects extend MATLAB by enabling you to model dynamic
systems represented by time-varying algorithms. System objects are well
integrated into the MATLAB language, regardless of whether you are writing
simple functions, working interactively in the command window, or creating
large applications.

In contrast to MATLAB functions, System objects automatically manage
state information, data indexing, and buffering, which is particularly useful
for iterative computations or stream data processing. This enables efficient
processing of long data sets.

System objects support fixed-point arithmetic. To use 64-bit data types,
you must have Fixed-Point Toolbox software. System objects also support
C-code generation from MATLAB and Simulink. With System objects, you
can optionally generate code to target the desktop or external hardware. You
can use System objects in Simulink® models via the MATLAB Function block.
You can compile code that contains System objects within MATLAB functions
using MATLAB Compiler software. (The compiler product does not support
System objects in MATLAB scripts.)

Note System objects predefined in the software do not support sparse
matrices. System objects you define support sparse matrices (see “Define a
New System object” on page 25-3).

25-2

Create System Objects

Create a System object
To use System objects, you must first create an object. For example,

H = dsp.FFT % Create default FFT object, H

% Create input data
Fs = 1000; % Sampling frequency
T = 1/Fs; % Sample time
L = 1024; % Length of signal
t = (0:L-1)*T % Time vector

% Sum of two sinusoids
X = 0.7*sin(2*pi*50*t.') + sin(2*pi*120*t.');

H = vision.FFT % Create default FFT object, H

% Create input data
Fs = 1000; % Sampling frequency
T = 1/Fs; % Sample time
L = 1024; % Length of signal
t = (0:L-1)*T % Time vector

% Sum of two sinusoids
X = 0.7*sin(2*pi*50*t.') + sin(2*pi*120*t.');

Hram = hdlram % Create default hdlram object, H

H = phased.LinearFMWaveform;

Define a New System object
You can define a System object to implement your algorithm. For information
and examples, see “Define New System Objects”“Define New System
Objects”“Define New System Objects”“Define New System Objects”.

25-3

25 System Objects

Change a System object Property
In general, you should set the object properties before you use the step
method to run data through the object. To change the value of a property,
use this format,

H.Normalize = true % Set the Normalize property

The property values of the FFT object, H, are displayed.

H.RAMType = 'Dual Port' % Set the RAMType property

The property values of the hdlram object, H, are displayed.

H.SweepBandwidth = 2e5; % Set the SweepBandwidth property
H.SweepDirection = 'Down' % Set the SweepDirection property

The property values of the linear FM pulse waveform object, H, are displayed.

Check if a System object Property Has Changed
To check if a tunable property has changed since step was last called, use
this syntax:

flag = isChangedProperty(H,'Normalize')

flag is true if the Normalize property of object H has changed.

Run a System object
To execute a System object, use the step method.

Y = step(H,X); % Process input data, X

Y = step(H);

The output data from the step method is stored in Y, which, in this case,
is the FFT of X.

The output data from the step method is stored in Y, which, in this case,
is the FFT of X.

25-4

Create System Objects

The output data from the step method is stored in Y, which, in this case, is a
vector of samples from the linear FM pulse waveform.

The output data from the step method is stored in Y, which, in this case, is
port input and output data.

Display Available System Objects
To see a list of all the System objects for a particular package, type help
dsphelp commhelp phasedhelp visionhelp hdlverifier. To display help
for specific objects, properties, or methods, see “Find Help and Examples
for System Objects” on page 25-19 .

25-5

25 System Objects

Set Up System Objects

In this section...

“Create a New System object” on page 25-6

“Retrieve System object Property Values” on page 25-6

“Set System object Property Values” on page 25-7

Create a New System object
You must create aSystem object before using it. You can create the object at
the MATLAB command line or within a program file. Your command-line code
and programs can pass MATLAB variables into and out of System objects.

For general information about working with MATLAB objects, see
“Object-Oriented Programming” in the MATLAB documentation.

Retrieve System object Property Values
System objects have properties that configure the object. You use the default
values or set each property to a specific value. The combination of a property
and its value is referred to as a Name-Value pair. You can display the list of
relevant property names and their current values for an object by using the
object handle only, <handleName>. Some properties are relevant only when
you set another property or properties to particular values. If a property
is not relevant, it does not display.

To display a particular property value, use the handle of the created object
followed by the property name: <handle>.<Name>.

Example
This example retrieves and displays the TransferFunction property value
for the previously created DigitalFilter object:

This example retrieves and displays the InitialCondition property value
for the previously created DifferentialDecoder object:

25-6

Set Up System Objects

This example retrieves and displays the Threshold property value for the
previously created EdgeDetector object:

This example retrieves and displays the PeakPower property value for the
previously created Transmitter object:

This example retrieves and displays the RAMType property value for the
previously created hdlram object:

H.TransferFunction

H.InitialCondition

H.Threshold

H.PeakPower

H.RAMType

Set System object Property Values
You set the property values of a System object to model the desired algorithm.

Note When you use Name-Value pair syntax, the object sets property values
in the order you list them. If you specify a dependent property value before its
parent property, an error or warning may occur.

Set Properties for a New System object
To set a property when you first create the object, use Name-Value pair
syntax. For properties that allow a specific set of string values, you can use
tab completion to select from a list of valid values.

H1 = dsp.DigitalFilter('CoefficientsSource','Input port')

H1 = comm.DifferentialDecoder('InitialCondition',1)

H1 = vision.EdgeDetector('ThresholdSource','Property')

H1 = phased.Transmitter('PeakPower',6000)

25-7

25 System Objects

H1 = hdlram('RAMType','Single port')

where

• H1 is the handle to the object

• dsp is the package name.

comm is the package name.

vision is the package name.

phased is the package name.

• DigitalFilter is the object name.

DifferentialDecoder is the object name.

EdgeDetector is the object name.

Transmitter is the object name.

hdlram is the object name.

• CoefficientsSource is the property name.

InitialCondition is the property name.

ThresholdSource is the property name.

PeakPower is the property name.

RAMType is the property name.

• 'Input port' is the property value.

1 is the property value.

`Property' is the property value.

6000 is the property value.

`Single port' is the property value.

Set Properties for an Existing System object
To set a property after you have created an object, use either of the following
syntaxes:

25-8

Set Up System Objects

H1.CoefficientsSource = 'Property'

H1.InitialCondition = 0

H1.ThresholdSource = 'Input port'

H1.PeakPower = 6500

H1.RAMType = 'Dual port'

or

set(H1,'CoefficientsSource','Property')

set(H1,InitialCondition',0)

set(H1,'ThresholdSource','Input property')

set(H1,'PeakPower',6500)

set(H1,'RAMType','Dual port')

Use Value-Only Inputs
Some object properties have no useful default values or must be specified
every time you create an object. For these properties, you can specify only
the value without specifying the corresponding property name. If you use
value-only inputs, those inputs must be in a specific order, which is the
same as the order in which the properties are displayed. Refer to the object
reference page for details.

H2 = dsp.FIRDecimator(3,[1 .5 1])

specifies the DecimationFactor as 3 and the Numerator as [1 .5 1].

H2 = vision.VideoFileReader('viptrain.avi')

specifies the Filename as viptrain.avi.

hURA = phased.URA([2 3],0.25);

25-9

25 System Objects

specifies the Size property as [2 3] and the ElementSpacing property as
0.25.

25-10

Process Data Using System Objects

Process Data Using System Objects

In this section...

“What are System object Methods?” on page 25-11

“The Step Method” on page 25-11

“Common Methods” on page 25-13

“Advantages of Using Methods” on page 25-15

What are System object Methods?
After you create a System object, you use various object methods to process
data or obtain information from or about the object. All methods that are
applicable to an object are described in the reference pages for that object.
System object method names begin with a lowercase letter and class and
property names begin with an uppercase letter. The syntax for using methods
is <method>(<handle>), such as step(H).

The Step Method
The step method is the key System object method. You use step to process
data using the algorithm defined by that object. The step method performs
other important tasks related to data processing, such as initialization and
handling object states. Every System object has its own customized step
method, which is described in detail on the step reference page for that object.
For more information about the step method and other available methods, see
the descriptions in “Common Methods” on page 25-13.

Calculate the Effect of Propagating a Signal in Free Space
This example uses two different step methods. The first step method is
associated with the phased.LinearFMWaveform object and the second step
method is associated with the phased.Freespace object.

Construct a linear FM waveform with a pulse duration of 50 microseconds, a
sweep bandwidth of 100 kHz, an increasing instantaneous frequency, and a
pulse repetition frequency (PRF) of 10 kHz..

hFM = phased.LinearFMWaveform('SampleRate',1e6,...

25-11

25 System Objects

'PulseWidth',5e-5,'PRF',1e4,...
'SweepBandwidth',1e5,'SweepDirection','Up',...
'OutputFormat','Pulses','NumPulses',1);

Obtain the waveform using the step method. Note that the input to the step
method is a handle to a phased.LinearFMWaveform object.

Sig = step(hFM);

Construct a free space object with a propagation speed equal to the speed of
light, an operating frequency of 3 GHz, and a sample rate of 1 MHz. The free
space object is constructed to model one way propagation.

hFS = phased.FreeSpace(...
'PropagationSpeed',physconst('LightSpeed'),...
'OperatingFrequency',3e9,'TwoWayPropagation',false,...
'SampleRate',1e6);

Calculate the effect on the waveform of one-way propagation in free space from
coordinates [0;0;0] to [500; 1e3; 20] and plot the results for comparison.

PropSig = step(hFS,Sig,[0; 0; 0],[500; 1e3; 20],...
[0;0;0],[0;0;0]);

% compare the original signal to the propagated waveform
t = unigrid(0,1/hFS.SampleRate,length(Sig)*1/hFS.SampleRate,'[)');
subplot(211)
plot(t,real(Sig)); title('Original Signal (real part)');
ylabel('Amplitude');
subplot(212)
plot(t,real(PropSig)); title('Propagated Signal (real part)');
xlabel('Seconds'); ylabel('Amplitude');

25-12

Process Data Using System Objects

Common Methods
All System objects support the following methods, each of which is described
in a method reference page associated with the particular object. In cases
where a method is not applicable to a particular object, calling that method
has no effect on the object.

Method Description

step Processes data using the algorithm defined by the
object. As part of this processing, it initializes needed
resources, returns outputs, and updates the object
states. After you call the step method, you cannot
change any input specifications (i.e., dimensions, data
type, complexity). During execution, you can change
only tunable properties. The step method returns
regular MATLAB variables.

Example: Y = step(H,X)

release Releases any special resources allocated by the object,
such as file handles and device drivers, and unlocks
the object. For System objects, use the release
method instead of a destructor. See “Understand
System object Modes” on page 25-16.

25-13

25 System Objects

Method Description

clone Creates another object with the same property values

isLocked Returns a logical value indicating whether the object
is locked. See “Understand System object Modes” on
page 25-16.

reset Resets the internal states of the object to the initial
values for that object

isDone Applies to source objects only. Returns a logical value
indicating whether the step method has reached
the end of the data file. If a particular object does
not have end-of-data capability, this method value
returns false.

isChangedProperty Returns true if the specified tunable property value
has changed since the last call to step.Example: flag
= isChangedProperty(obj,'propertyName')

info Returns a structure containing characteristic
information about the object. The fields of this
structure vary depending on the object. If a particular
object does not have characteristic information, the
structure is empty.

getNumInputs Returns the number of inputs (excluding the object
itself) expected by the step method. This number
varies for an object depending on whether any
properties enable additional inputs.

getNumOutputs Returns the number of outputs expected from the step
method. This number varies for an object depending
on whether any properties enable additional outputs.

getDiscreteState Returns the discrete states of the object in a structure.
If the object is unlocked (when the object is first
created and before you have run the step method
on it or after you have released the object), the
states are empty. If the object has no discrete states,
getDiscreteState returns an empty structure.

25-14

Process Data Using System Objects

Advantages of Using Methods
System objects use a minimum of two commands to process data—a
constructor to create the object and the step method to run data through the
object. This separation of declaration from execution lets you create multiple,
persistent, reusable objects, each with different settings. Using this approach
avoids repeated input validation and verification, allows for easy use within a
programming loop, and improves overall performance. In contrast, MATLAB
functions must validate parameters every time you call the function.

These advantages make System objects particularly well suited for processing
streaming data, where segments of a continuous data stream are processed
iteratively. This ability to process streaming data provides the advantage of
not having to hold large amounts of data in memory. Use of streaming data
also allows you to use simplified programs that use loops efficiently.

25-15

25 System Objects

Tuning System object Properties in MATLAB

In this section...

“Understand System object Modes” on page 25-16

“Change Properties While Running System Objects” on page 25-17

“Change System object Input Complexity or Dimensions” on page 25-18

Understand System object Modes
System objects are in one of two modes: unlocked or locked. After you create
an object and until it starts processing data, that object is in unlocked mode.
You can change any of its properties as desired.

The object initializes and locks when it begins processing data. The typical
way in which an object becomes locked is when the step method is called on
that object. To determine if an object is locked, use the isLocked method. To
unlock an object, use the release method. When the object is locked, you
cannot change any of the following:

• Number of inputs or outputs

• Data type

• Dimensions of inputs or tunable properties, except for System objects
that support variable-size data. Variable-size data is data whose size can
change at run time. By contrast, fixed-size data is data whose size is known
and locked at compile time and, therefore, cannot change at run time.

• Value of any nontunable property

Several System objects do not allow changing the complexity of inputs from
real to complex. You can, however, change the input complexity from complex
to real without unlocking the object.

These restrictions allow the object to maintain states and allocate memory
appropriately.

25-16

Tuning System object™ Properties in MATLAB®

Change Properties While Running System Objects
When an object is in locked mode, it is processing data and you can only
change the values of properties that are tunable. To determine if a particular
System object property is tunable, see the corresponding reference page or
use a command of this form:

help dsp.FFT.Normalize

help comm.DifferentialDecoder.InitialCondition

help vision.EdgeDetector.Threshold

help phased.Transmitter.PeakPower

help hdlram.RAMType

where

• dsp is the package name.

comm is the package name.

vision is the package name.

phased is the package name.

• FFT is the object name.

DifferentialDecoder is the object name.

EdgeDetector is the object name.

Transmitter is the object name.

hdlram is the object name.

• Normalize is the property name.

InitialCondition is the property name.

Threshold is the property name.

PeakPower is the property name.

RAMType is the property name.

25-17

25 System Objects

Note Unless otherwise specified, System object properties are not tunable.

For information on locked and unlocked modes, see “Understand System
object Modes” on page 25-16.

Change System object Input Complexity or
Dimensions
During simulations you can change an input’s complexity from complex to
real, but not from real to complex. You cannot change any input complexity
during code generation.

For objects that do not support variable-size input, if you change the input
dimensions while the object is in locked mode, the object produces a warning
and unlocks. The object then reinitializes the next time you call the step
method. See the object’s reference page for more information. You can change
the value of a tunable property and the input size without a warning or error
being produced. For all other changes at runtime, an error occurs.

25-18

Find Help and Examples for System Objects

Find Help and Examples for System Objects
Refer to the following resources for more information about System objects.

• Package help – help dsp, where dsp is a product package name

Package help – help comm, where comm is a product package name

Package help – help vision, where vision is a product package name

Package help – help phased, where phased is a product package name

• Object help – help dsp.FFT, where FFT is the object name

Object help – help comm.DifferentialDecoder, where
DifferentialDecoder is the object name

Object help – help vision.EdgeDetector, where EdgeDetector is the
object name

Object help – help phased.Transmitter, where Transmitter is the object
name

Object help – help hdlverifier.HdlCosimulation

Object help – help hdlram

• Documentation reference pages for an object – doc dsp.FFT

Documentation reference pages for an object – doc
comm.DifferentialDecoder

Documentation reference pages for an object – doc vision.EdgeDetector

Documentation reference pages for an object – doc phased.Transmitter

Documentation pages for object – doc hdlverifier.HdlCosimulation

Documentation pages for object – doc hdlram

• Property help — help dsp.FFT.Normalize, where Normalize is the
property name.

Property help — help comm.DifferentialDecoder.InitialCondition,
where InitialCondition is the property name.

Property help — help vision.EdgeDetector.Threshold, where
Threshold is the property name.

25-19

25 System Objects

Property help — help phased.Transmitter.PeakPower, where PeakPower
is the property name.

Property help – help hdlverifier.HdlCosimulation

Property help – help hdlram.RAMType

• Fixed-point property help – dsp.FFT.helpFixedPoint, where
helpFixedPoint is the standard way to get fixed point property information
for any System object.

Fixed-point property help – comm.DifferentialDecoder.helpFixedPoint,
where helpFixedPoint is the standard way to get fixed point property
information for any System object.

Fixed-point property help – vision.EdgeDetector.helpFixedPoint,
where helpFixedPoint is the standard way to get fixed point property
information for any System object.

Fixed-point property help – hdlram.helpFixedPoint, where
helpFixedPoint is the standard way to get fixed point property information
for any System object.

• Method help – help dsp.FFT.step, where step is the method name.

Method help – help comm.DifferentialDecoder.step, where step is
the method name.

Method help – help vision.EdgeDetector.step, where step is the
method name.

Method help – help phased.Transmitter.step, where step is the method
name.

Method help – help hdlram.step, where step is the method name.

To view examples, go to the Help contents for the associated product. Under
Examples, select MATLAB Examples.Under Examples, select Cosimulation
with Cadence Incisive or Cosimulation with Mentor Graphics
ModelSim.

25-20

Use System Objects in MATLAB® Code Generation

Use System Objects in MATLAB Code Generation

In this section...

“Considerations for Using System Objects in Generated Code” on page 25-21

“Use System Objects with codegen” on page 25-26

“Use System Objects with the MATLAB Function Block” on page 25-26

“Use System Objects with MATLAB® Compiler™” on page 25-26

Considerations for Using System Objects in
Generated Code
You can generate C/C++ code from System objects using MATLAB Coder
product. Using this product with System objects, you can generate efficient
and compact code for deployment in desktop and embedded systems and
accelerate fixed-point algorithms. System objects also support code generation
using the MATLAB Function block in Simulink and the MATLAB Coder
codegen function.

For general information on generating code, see

• MATLAB Coder product

• Simulink Coder product

• Embedded Coder® product

The following example, which uses System objects, shows the key factors
to consider, such as using persistent variables, passing property values,
and extrinsic functions, when you make MATLAB code suitable for code
generation.

function lmssystemidentification
% LMSSYSTEMIDENTIFICATION System identification using
% LMS adaptive filter
%#codegen

% Declare System objects as persistent.

25-21

25 System Objects

persistent hlms hfilt;

% Initialize persistent System objects only once
% Do this with 'if isempty(persistent variable).'
% This condition will be false after the first time.

if isempty(hlms)

% Create LMS adaptive filter used for system
% identification. Pass property value arguments
% as constructor arguments. Property values must
% be constants during compile time.

hlms = dsp.LMSFilter(11, 'StepSize', 0.01);

% Create system (an FIR filter) to be identified.

hfilt = dsp.DigitalFilter(...
'TransferFunction', 'FIR (all zeros)', ...
'Numerator', fir1(10, .25));

end

x = randn(1000,1); % Input signal
d = step(hfilt, x) + 0.01*randn(1000,1); % Desired signal
[~,~,w] = step(hlms, x, d); % Filter weights

% Declare functions called into MATLAB that do not generate
% code as extrinsic.

coder.extrinsic('stem');

stem([get(hfilt, 'Numerator').', w]);
end

% To compile this function use codegen lmssystemidentification.
% This produces a mex file with the same name in the current
% directory.

function ex_system_codegen

25-22

Use System Objects in MATLAB® Code Generation

% Find corresponding interest points between a pair of images using local
% neighborhoods.

%#codegen

% Declare System objects as persistent.
persistent cornerDetector colorSpaceConverter

% Initialize persistent System objects only once
% Do this with 'if isempty(persistent variable).'
% This condition will be false after the first time.
if isempty(cornerDetector)

% Create system objects. Pass property value arguments as constructor
% arguments. Property values must be constants during compile time.

cornerDetector = vision.CornerDetector('Method',...
'Harris corner detection (Harris & Stephens)');

colorSpaceConverter = vision.ColorSpaceConverter('Conversion',...
'RGB to intensity');

end

% Declare functions called into MATLAB that do not generate
% code as extrinsic.
coder.extrinsic('imread');

% The output of an extrinsic function is an mxArray - also called a MATLAB
% array. To use mxArrays returned by extrinsic functions, assign the
% mxArray to a variable whose type and size is defined.
imgLeft = zeros([300 400 3],'uint8');
imgRight = zeros([300 400 3],'uint8');

% Call extrinsic function
imgLeft = imread('viprectification_deskLeft.png');
imgRight = imread('viprectification_deskRight.png');

% Convert RGB to grayscale
I1 = step(colorSpaceConverter,imgLeft);
I2 = step(colorSpaceConverter,imgRight);

25-23

25 System Objects

% Find corners
points1 = step(cornerDetector, I1);
points2 = step(cornerDetector, I2);

% Extract neighborhood features
[features1, valid_points1] = extractFeatures(I1, points1);
[features2, valid_points2] = extractFeatures(I2, points2);

% Match features
index_pairs = matchFeatures(features1, features2);

% Retrieve locations of corresponding points for each image
matched_points1 = valid_points1(index_pairs(:, 1), :);
matched_points2 = valid_points2(index_pairs(:, 2), :);

% Visualize corresponding points
coder.extrinsic(`showMatchedFeatures')
figure; showMatchedFeatures(I1, I2, matched_points1, matched_points2);

For a detailed code generation example, see “Generate Code for MATLAB
Handle Classes and System Objects” in the MATLAB Coder product
documentation.

The following usage rules and limitations apply to using System objects in
code generated from MATLAB.

Usage Rules for System Objects in Generated MATLAB Code

• Assign System objects to persistent variables.

• Global variables are not supported. To avoid syncing global variables
between a MEX file and the workspace, use a compiler options object. For
example,

f = coder.MEXConfig;
f.GlobalSyncMethod='NoSync'

Then, include '-config f' in your codegen command.

25-24

Use System Objects in MATLAB® Code Generation

• Initialize System objects once by embedding the object handles in an if
statement with a call to isempty().

• Call the constructor exactly once for each System object.

• Set arguments to System object constructors as compile-time constants.

• Use the object constructor to set System objectproperties because you
cannot use dot notation for code generation. You can use the get method
to display properties.

• Test your code in simulation before generating code.

Limitations on Using System Objects in Generated MATLAB Code

• Ensure that size, type and complexity of inputs do not change.

• Ensure that the value assigned to a nontunable or public property is
a constant and that there is at most one assignment to that property
(including the assignment in the constructor).

• For most System objects predefined in the software, the only time you
can set their properties during code generation is when you construct the
objects. System objects that support tunable properties at any time during
code generation are listed in the product’s code generation support table.
For System objects that you define, you can also change their tunable
properties at any time during code generation.

• Do not change the size of properties during code generation.

• The only System objectmethods supported in code generation are

- get

- getNumInputs

- getNumOutputs

- isDone (for sources only)

- reset

- step

• Do not set System objects to become outputs from the MATLAB Function
block.

25-25

25 System Objects

• Do not pass a System objectas an example input argument to a function
being compiled with codegen.

• Do not pass a System objectto functions declared as extrinsic (i.e., functions
called in interpreted mode) using the coder.extrinsic function. Do not
return System objects from any extrinsic functions.

Use System Objects with codegen
You can include System objects in MATLAB code in the same way you
include any other elements. You can then compile a MEX file from your
MATLAB code by using the codegen command, which is available if you have
a MATLAB Coder license. This compilation process, which involves a number
of optimizations, is useful for accelerating simulations. See “Getting Started
with MATLAB Coder” and “MATLAB Classes” for more information.

Use System Objects with the MATLAB Function Block
Using the MATLAB Function block, you can include a MATLAB language
function in a Simulink model. This model can then generate embeddable code.
You can include any System object in the MATLAB Function block. System
objects provide higher-level algorithms for code generation than do most
associated blocks. For more information, see “What Is a MATLAB Function
Block?” in the Simulink documentation.

Use System Objects with MATLAB Compiler

Note MATLAB Compiler software supports System objects for use inside
MATLAB functions. The compiler product does not support System objects
for use in MATLAB scripts.

25-26

Index

IndexA
ANSI C

compared with fi objects 1-22
arguments

limit on number for code generation from
MATLAB 10-19

arithmetic
fixed-point 4-11
with [Slope Bias] signals 4-17

arithmetic operations
fixed-point 1-10

B
binary conversions 1-25

C
C/C++ code generation for supported

functions 20-1
casts

fixed-point 1-19
clone method 25-14
Code generation

fixed-point 8-1
code generation from MATLAB

benefits of 15-2
best practices

generate code generation report 8-48
preserving your code 8-51
separating test bench from function

code 8-51
specifying input properties 8-48
using build scripts 8-49
using file naming convention 8-51
using the MATLAB code analyzer 8-50

best practices for working with
variables 14-3

calling local functions 10-9
calling MATLAB functions 10-11

calling MATLAB functions using feval 10-16
characters 12-6
communications system toolbox System

objects 24-7
compilation directive %#codegen 10-8
compiler options for MEX code

generation 8-30
computer vision system toolbox System

objects 24-2
controlling run-time checks 8-71
converting mxArrays to known types 10-18
declaring MATLAB functions as extrinsic

functions 10-12
defining persistent variables 14-10
defining variables 14-2
defining variables by assignment 14-3
dsp system toolbox System objects 24-13
eliminating redundant copies of function

inputs 18-4
eliminating redundant copies of uninitialized

variables 14-7
how it resolves function calls 10-2
how to disable run-time checks 8-72
initializing persistent variables 14-10
inlining functions 18-3
limit on number of function arguments 10-19
pragma 10-8
recommended options for fiaccel 8-48
resolving extrinsic function calls during

simulation 10-16
resolving extrinsic function calls in generated

code 10-17
rules for defining uninitialized variables 14-7
setting properties of indexed variables 14-6
supported toolbox functions 10-10
unrolling for-loops 18-2
using Code Analyzer 8-26
using type cast operators in variable

definitions 14-6
variables, complex 12-4

Index-1

Index

when not to use 15-2
when to disable run-time checks 8-72
when to use 15-2
which features to use 15-4
working with mxArrays 10-17

coder.extrinsic 10-12
coder.nullcopy

uninitialized variables 14-7
communications system toolbox System objects

supported for code generation from
MATLAB 24-7

compiler options parameters
for MEX code generation fromMATLAB 8-30

compilers
supported for generating MEX functions

with fiaccel 8-15
complex multiplication

fixed-point 1-13
computer vision system toolbox System objects

supported for code generation from
MATLAB 24-2

controlling run-time checks
code generation from MATLAB 8-71

D
data type override 5-12
defining uninitialized variables

rules 14-7
defining variables

for C/C++ code generation 14-3
design considerations

when writing MATLAB Code for code
generation 15-7

display preferences
setting 5-5

dsp system toolbox System objects
supported for code generation from

MATLAB 24-13

E
eliminating redundant copies of function

inputs 18-4
extrinsic functions 10-12

F
fi objects

constructing 2-2
fiaccel

recommended options 8-48
supported compilers 8-15

fimath objects
properties

setting in the Model Explorer 4-8
setting properties in the Model Explorer 4-8

fimath objects 1-16
constructing 4-2

fipref objects
constructing 5-2

fixed-point arithmetic 4-11
fixed-point data

reading from workspace 9-2
writing to workspace 9-2

fixed-point data types
addition 1-12
arithmetic operations 1-10
casts 1-19
complex multiplication 1-13
modular arithmetic 1-10
multiplication 1-13
overflow handling 1-5
precision 1-5
range 1-5
rounding 1-6
saturation 1-5
scaling 1-4
subtraction 1-12
two’s complement 1-11
wrapping 1-5

Index-2

Index

fixed-point math 4-11
Fixed-Point MATLAB code 8-1
fixed-point run-time API 9-6
fixed-point signal logging 9-6
functions

limit on number of arguments for code
generation 10-19

Functions supported for C/C++ code
generation 20-1
alphabetical list 20-2
arithmetic operator functions 20-76
bit-wise operation functions 20-77
casting functions 20-78
Communications System Toolbox

functions 20-78
complex number functions 20-78
Computer Vision System Toolbox

functions 20-79
data type functions 20-80
derivative and integral functions 20-80
discrete math functions 20-81
error handling functions 20-81
exponential functions 20-81
filtering and convolution functions 20-82
Fixed-Point Toolbox functions 20-82
histogram functions 20-91
Image Processing Toolbox functions 20-91
input and output functions 20-92
interpolation and computational geometry

functions 20-92
linear algebra functions 20-93
logical operator functions 20-93
MATLAB Compiler functions 20-94
matrix/array functions 20-94
nonlinear numerical methods 20-98
polynomial functions 20-98
relational operator functions 20-98
rounding and remainder functions 20-99
set functions 20-99
signal processing functions 20-100

Signal Processing Toolbox functions 20-101
special value functions 20-105
specialized math functions 20-105
statistical functions 20-106
string functions 20-106
structure functions 20-107
trigonometric functions 20-108

Functions supported for MEX and C/C++ code
generation
categorized list 20-75

G
getDiscreteState method 25-14
getNumInputs method 25-14
getNumOutputs method 25-14

H
how to disable run-time checks

code generation from MATLAB 8-72

I
indexed variables

setting properties for code generation from
MATLAB 14-6

info method 25-14
initialization

persistent variables 14-10
interoperability

fi objects with DSP System Toolbox 9-7
fi objects with Filter Design Toolbox 9-11
fi objects with Simulink 9-2

isChangedProperty method 25-14
isDone method 25-14
isLocked method 25-14

L
locked vs. unlocked mode 25-16

Index-3

Index

logging
overflows and underflows 5-7

logging modes
setting 5-7

M
math

with [Slope Bias] signals 4-17
MATLAB

features not supported for code
generation 15-14

MATLAB Coder
best practices

using the MATLAB code analyzer 23-2
combining property specifications 22-24
specifying general properties of primary

inputs 22-24
MATLAB for code generation

variable types 14-18
MATLAB Function block

using with Model Explorer and fixed-point
models 8-77

MATLAB functions
and generating code for mxArrays 10-17

Model Explorer
setting embedded.fimath properties 4-8
setting embedded.numerictype

properties 6-9
using with fixed-point code generation for

MATLAB 8-77
modular arithmetic 1-10
multiplication

fixed-point 1-13
mxArrays

converting to known types 10-18
for code generation from MATLAB 10-17

N
numerictype objects

properties
setting in the Model Explorer 6-9

setting properties in the Model Explorer 6-9
numerictype objects

constructing 6-2

O
one’s complement 1-11
overflow handling 1-5

compared with ANSI C 1-28
overflows

logging 5-7

P
padding 1-19
persistent variables

defining for code generation from
MATLAB 14-10

initializing for code generation from
MATLAB 14-10

precision
fixed-point data types 1-5

property values 25-7
quantizer objects 7-3

Q
quantizer objects

constructing 7-2
property values 7-3

R
range

fixed-point data types 1-5
reading fixed-point data from workspace 9-2
release method 25-13

Index-4

Index

reset method 25-14
rounding

fixed-point data types 1-6
run-time API

fixed-point data 9-6

S
saturation 1-5
scaling 1-4
signal logging

fixed-point 9-6
signal processing functions

for C/C++ code generation 20-101
[Slope Bias] arithmetic 4-17
step method 25-13
streaming data

using System objects 25-15
System object

clone method 25-14
creating 25-6
description 25-2
getDiscreteState method 25-14
getNumInputs method 25-14
getNumOutputs method 25-14
info method 25-14
isChangedProperty method 25-14
isDone method 25-14
isLocked 25-14
locked vs. unlocked mode 25-16
methods 25-11
properties 25-6
property values 25-7
release method 25-13
reset method 25-14
step method 25-13
tunable property 25-17
using with MATLAB code generation 25-21
value-only input 25-9

T
tunable 25-17
two’s complement 1-11
type cast operators

using in variable definitions 14-6

U
unary conversions 1-24
underflows

logging 5-7
uninitialized variables

eliminating redundant copies in generated
code 14-7

V
value-only input 25-9
variable types supported for code generation

from MATLAB 14-18
variables

eliminating redundant copies in C/C++ code
generated from MATLAB 14-7

Variables
defining by assignment for code generation

from MATLAB 14-3
defining for code generation from

MATLAB 14-2

W
when to disable run-time checks

code generation from MATLAB 8-72
wrapping

fixed-point data types 1-5
writing fixed-point data to workspace 9-2

Index-5

	toc
	Fixed-Point Concepts
	Fixed-Point Data Types
	Scaling
	Precision and Range
	Range
	Overflow Handling

	Precision
	Rounding Methods

	Arithmetic Operations
	Modulo Arithmetic
	Two's Complement
	Addition and Subtraction
	Multiplication
	Multiplication Data Types
	Multiplication with fimath

	Casts
	Casting from a Shorter Data Type to a Longer Data Type
	Casting from a Longer Data Type to a Shorter Data Type

	fi Objects and C Integer Data Types
	Integer Data Types
	C Integer Data Types
	fi Integer Data Types

	Unary Conversions
	ANSI C Usual Unary Conversions
	fi Usual Unary Conversions

	Binary Conversions
	ANSI C Usual Binary Conversions
	fi Usual Binary Conversions

	Overflow Handling
	ANSI C Overflow Handling
	fi Overflow Handling

	Working with fi Objects
	Ways to Construct fi Objects
	Types of fi Constructors
	Examples of Constructing fi Objects
	Constructing a fi Object with Property Name/Property Value Pairs
	Constructing a fi Object Using a numerictype Object
	Constructing a fi Object Using a fimath Object
	Building fi Object Constructors in a GUI
	Determining Property Precedence
	Copying a fi Object

	Cast fi Objects
	Overwriting by Assignment
	Ways to Cast with MATLAB Software
	Casting by Subscripted Assignment
	Casting by Conversion Function
	Casting with the reinterpretcast Function

	fi Object Properties
	Data Properties
	fimath Properties
	numerictype Properties
	Setting fi Object Properties
	Setting Fixed-Point Properties at Object Creation
	Using Direct Property Referencing with fi

	fi Object Functions

	Fixed-Point Topics
	Set Up Fixed-Point Objects
	Create Fixed-Point Data
	Notation
	Setup
	Default Fixed-Point Attributes
	Specifying Signed and WordLength Properties
	Precision
	Access to Data
	DOUBLE(A)
	A.DOUBLE = ...
	STOREDINTEGER(A)
	Relationship Between Stored Integer Value and Real-World Value
	BIN(A), OCT(A), DEC(A), HEX(A)
	A.BIN = ..., A.OCT = ..., A.DEC = ..., A.HEX = ...
	Specifying FractionLength
	Specifying Properties with Parameter/Value Pairs
	Numeric Type Properties
	Display Preferences
	Display of Real-World Values
	Cleanup

	View Fixed-Point Number Circles
	Fixed-Point Number Definitions
	Unsigned Integers.
	Unsigned Integer Number Circle.
	Unsigned Fixed-Point.
	Unsigned Fixed-Point Number Circle.
	Unsigned Fractional Fixed-Point.
	Unsigned Fractional Fixed-Point Number Circle.
	Signed Two's-Complement Integers.
	Signed Two's-Complement Integer Number Circle.
	Signed Fixed-Point.
	Signed Fixed-Point Number Circle.
	Signed Fractional Fixed-Point.
	Signed Fractional Fixed-Point Number Circle.
	Perform Binary-Point Scaling
	FI Construction
	Fraction Length and the Position of the Binary Point
	The Fraction Length is Positive and Less than the Word Length
	The Fraction Length is Positive and Greater than the Word Length
	The Fraction Length is a Negative Integer and Less than the Word
	The Fraction Length is Set Automatically to the Best Precision P
	Interactive FI Binary Point Scaling Example
	Develop Fixed-Point Algorithms
	Simple Example of Algorithm Development
	Floating-Point Variable Definitions
	Data-Type-Independent Algorithm
	Visualize Dynamic Range
	Instrument Floating-Point Code
	Analyze Information in the Scope
	Fixed-Point Variable Definitions
	Same Data-Type-Independent Algorithm
	Compare and Plot the Floating-Point and Fixed-Point Results
	Plot the Error
	Simulink
	Assumptions Made for this Example
	Calculate Fixed-Point Sine and Cosine
	Calculating Sine and Cosine Using the CORDIC Algorithm
	Understanding the CORDICSINCOS Sine and Cosine Code
	Visualizing the Sine-Cosine Rotation Mode CORDIC Iterations
	Computing Fixed-point Sine with cordicsin
	Accelerating the Fixed-Point CORDICSINCOS Function with FIACCEL
	Calculating SIN and COS Using Lookup Tables
	Single Lookup Table Based Approach
	Understanding the Lookup Table Based SIN and COS Implementation
	Computing Fixed-point Sine Using SIN
	Comparing the Costs of the Fixed-Point Approximation Algorithms
	References
	Calculate Fixed-Point Arctangent
	Calculating atan2(y,x) Using the CORDIC Algorithm
	Understanding the CORDICATAN2 Code
	Visualizing the Vectoring Mode CORDIC Iterations
	Performing Overall Error Analysis of the CORDIC Algorithm
	Accelerating the Fixed-Point CORDICATAN2 Algorithm Using FIACCEL
	Calculating atan2(y,x) Using Chebyshev Polynomial Approximation
	Comparing the Algorithmic Error of the CORDIC and Polynomial App
	Converting the Floating-Point Chebyshev Polynomial Approximation
	Performing the Overall Error Analysis of the Polynomial Approxim
	Calculating atan2(y,x) Using Lookup Tables
	Single Lookup Table Based Approach
	Understanding the Lookup Table Based ATAN2 Implementation
	Computing Fixed-point Argtangent Using ATAN2
	Comparison of Overall Error Between the Fixed-Point Implementati
	Comparing the Costs of the Fixed-Point Approximation Algorithms
	References
	Compute Sine and Cosine Using CORDIC Rotation Kernel
	Introduction
	CORDIC Kernel Algorithm Using the Rotation Computation Mode
	Efficient MATLAB Implementation of a CORDIC Rotation Kernel Algo
	CORDIC-Based Sine and Cosine Computation Using Normalized Inputs
	References
	Perform QR Factorization Using CORDIC
	Setup
	Defining the CORDIC QR Algorithm
	Defining the CORDIC Givens Rotation
	Defining the Inverse CORDIC Growth Constant
	Exploring CORDIC Growth as a Function of Number of Iterations
	Comparing CORDIC to the Standard Givens Rotation
	Example of CORDIC Rotations
	Determining the Optimal Output Type of Q for Fixed Word Length
	Preventing Overflow in Fixed Point R
	Example of Fixed Point Growth in R
	Increasing Precision in R
	Picking Default Number of Iterations
	Example: QR Factorization Not Unique
	Solving Systems of Equations Without Forming Q
	Links to the Documentation
	Functions Used in this Example
	References
	Cleanup
	Compute Square Root Using CORDIC Hyperbolic Kernel
	Introduction
	CORDIC Kernel Algorithms Using Hyperbolic Computation Modes
	Efficient MATLAB Implementation of a CORDIC Hyperbolic Vectoring
	CORDIC-Based Square Root Computation
	References
	Convert Cartesian to Polar Using CORDIC Vectoring Kernel
	Introduction
	CORDIC Kernel Algorithm Using the Vectoring Computation Mode
	Efficient MATLAB Implementation of a CORDIC Vectoring Kernel Alg
	CORDIC-Based Cartesian to Polar Conversion Using Normalized Inpu
	References
	Set Data Types Using Min/Max Instrumentation
	The Unit Under Test
	Data Types Determined by the Requirements of the Design
	Data Types Determined by the Values of the Coefficients and Inpu
	Instrument the MATLAB Function as a Scaled-Double MEX Function
	Test Bench with Chirp Input
	Run the Instrumented MEX Function to Record Min/Max Values
	Show Instrumentation Results with Proposed Fraction Lengths for
	Test Bench with Step Input
	Run the Instrumented MEX Function with Step Input
	Show Accumulated Instrumentation Results
	Apply Proposed Fixed-Point Properties
	Instrument the MATLAB Function as a Fixed-Point MEX Function
	Validate the Fixed-Point Algorithm
	Validate with Chirp Input
	Validate with Step Inputs
	Convert Fast Fourier Transform (FFT) to Fixed Point
	Textbook FFT Algorithm
	Verify Floating-Point Code
	Identify Fixed-Point Issues
	Use Min/Max Instrumentation to Identify Overflows
	Modify the Algorithm to Address Fixed-Point Issues
	References
	Detect Limit Cycles in Fixed-Point State-Space Systems
	Select a State-Space Representation of the System.
	Filter Implementation
	Floating-Point Filter
	Random Initial States Followed Through Time
	State Trajectory
	Fixed-Point Filter Creation
	Plot the Projection of the Square in Fixed-Point
	Execute the Fixed-Point Filter.
	Sufficient Conditions for Preventing Overflow Limit Cycles
	Apply Similarity Transform to Create a Normal A
	Check for Limit Cycles on the Transformed System.
	Plot the Projection of the Square of the Normal-Form System
	Plot the State Sequence
	Compute Quantization Error
	Uniformly Distributed Random Signal
	Fix: Round Towards Zero.
	Floor: Round Towards Minus Infinity.
	Ceil: Round Towards Plus Infinity.
	Round: Round to Nearest. In a Tie, Round to Largest Magnitude.
	Convergent: Round to Nearest. In a Tie, Round to Even.
	Comparison of Nearest vs. Convergent
	Plot Helper Function
	Normalize Data for Lookup Tables
	Function to Normalize Unsigned Data
	Number-of-Leading-Zeros Lookup Table
	Example
	Implement Fixed-Point Log2 Using Lookup Table
	Log2 Implementation
	Log2 Lookup Table
	Example
	Implement Fixed-Point Square Root Using Lookup Table
	Square Root Implementation
	Square Root Lookup Table
	Example
	Set Fixed-Point Math Attributes
	Set and Remove Fixed Point Math Attributes
	Mismatched FIMATH
	Changing FIMATH on Temporary Variables
	Removing FIMATH Conflict in a Loop
	Polymorphic Code
	More Polymorphic Code
	SETFIMATH on Integer Types

	Working with fimath Objects
	fimath Object Construction
	fimath Object Syntaxes
	Building fimath Object Constructors in a GUI

	fimath Object Properties
	Math, Rounding, and Overflow Properties
	Setting fimath Object Properties
	Setting fimath Properties at Object Creation
	Using Direct Property Referencing with fimath
	Setting fimath Properties in the Model Explorer

	fimath Properties Usage for Fixed-Point Arithmetic
	fimath Rules for Fixed-Point Arithmetic
	Binary Operations
	Unary Operations
	Concatenation Operations
	fimath Object Operations: add, mpy, sub
	MATLAB Function Block Operations

	Binary-Point Arithmetic
	[Slope Bias] Arithmetic

	fimath for Rounding and Overflow Modes
	fimath for Sharing Arithmetic Rules
	Default fimath Usage to Share Arithmetic Rules
	Local fimath Usage to Share Arithmetic Rules

	fimath ProductMode and SumMode
	Example Setup
	FullPrecision
	KeepLSB
	KeepMSB
	SpecifyPrecision

	Working with fipref Objects
	fipref Object Construction
	fipref Object Properties
	Display, Data Type Override, and Logging Properties
	fipref Object Properties Setting
	Setting fipref Properties at Object Creation
	Using Direct Property Referencing with fipref

	fi Object Display Preferences Using fipref
	Underflow and Overflow Logging Using fipref
	Logging Overflows and Underflows as Warnings
	Accessing Logged Information with Functions

	Data Type Override Preferences Using fipref
	Overriding the Data Type of fi Objects
	Data Type Override for Fixed-Point Scaling

	Working with numerictype Objects
	numerictype Object Construction
	numerictype Object Syntaxes
	Example: Construct a numerictype Object with Property Name and P
	Example: Copy a numerictype Object
	Example: Build numerictype Object Constructors in a GUI

	numerictype Object Properties
	Data Type and Scaling Properties
	Set numerictype Object Properties
	Setting numerictype Properties at Object Creation
	Use Direct Property Referencing with numerictype Objects
	Set numerictype Properties in the Model Explorer

	numerictype Structure of Fixed-Point Objects
	Valid Values for numerictype Structure Properties
	Properties That Affect the Slope
	Stored Integer Value and Real World Value

	numerictype Objects Usage to Share Data Type and Scaling Setting
	Example 1
	Example 2

	Working with quantizer Objects
	Constructing quantizer Objects
	quantizer Object Properties
	Quantizing Data with quantizer Objects
	Transformations for Quantized Data

	Code Acceleration and Code Generation from MATLAB for Fixed-Poin
	Code Acceleration and Code Generation from MATLAB
	Requirements for Generating Complied C Code Files
	Functions Supported for Code Acceleration or Generation
	Fixed-Point Code Acceleration and Generation Workflow
	Set Up Compiler to Generate Compiled C Code Functions
	Accelerate Code Using fiaccel
	Speeding Up Fixed-Point Execution with fiaccel
	Running fiaccel
	Generated Files and Locations
	Example: Comparing Run Times When Accelerating Different Algorit
	Trial 1: Best Performance
	Trial 2: Worst Performance
	Ratio of Times

	Data Type Override Using fiaccel

	File Infrastructure and Paths Setup
	Compile Path Search Order
	When to Use the Code Generation Path
	Add Files to the Code Generation Path
	Adding Folders to Search Paths
	Naming Conventions
	Reserved Prefixes
	Reserved Keywords
	Conventions for Naming Generated files

	Detect and Debug Code Generation Errors
	Debugging Strategies
	Error Detection at Design Time
	Error Detection at Compile Time

	Set Up C Code Compilation Options
	C Code Compiler Configuration Object
	Compilation Options Modification at the Command Line Using Dot N
	How fiaccel Resolves Conflicting Options

	MEX Configuration Dialog Box Options
	See Also

	Specify Primary Function Input Properties
	Why You Must Specify Input Properties
	Properties to Specify
	Default Property Values
	Supported Classes

	Rules for Specifying Properties of Primary Inputs
	Methods for Defining Properties of Primary Inputs
	Input Properties Definition by Example at the Command Line
	Command Line Option -args
	Rules for using the -args option
	Specifying Constant Inputs
	Specifying Variable-Size Inputs

	Best Practices for Accelerating Fixed-Point Code
	Recommended Compilation Options for fiaccel
	Build Scripts
	Check Code Interactively Using MATLAB Code Analyzer
	Separating Your Test Bench from Your Function Code
	Preserving Your Code
	File Naming Conventions

	Create and Use Fixed-Point Code Generation Reports
	Code Generation Report Creation
	Code Generation Report Opening
	Viewing Your MATLAB Code
	Viewing Variables in the Variables Tab
	See Also

	Generate C Code from Code Containing Global Data
	Workflow Overview
	Declaring Global Variables
	Defining Global Data
	Defining Global Data in the MATLAB Global Workspace
	Defining Global Data at the Command Line

	Synchronizing Global Data with MATLAB
	Why Synchronize Global Data?
	When to Synchronize Global Data
	How to Synchronize Global Data

	Limitations of Using Global Data

	Define Input Properties Programmatically in MATLAB File
	How to Use assert
	Specify Any Class
	Specify fi Class
	Specify Structure Class
	Specify Any Size
	Specify Scalar Size
	Specify Real Input
	Specify Complex Input
	Specify numerictype of Fixed-Point Input
	Specify fimath of Fixed-Point Input
	Specify Multiple Properties of Input

	Rules for Using assert Function
	Example: Specifying Properties of Primary Fixed-Point Inputs
	Example: Specifying Class and Size of Scalar Structure
	Example: Specifying Class and Size of Structure Array

	Control Run-Time Checks
	Types of Run-Time Checks
	When to Disable Run-Time Checks
	How to Disable Run-Time Checks

	Generation with MATLAB Coder
	Code Generation with MATLAB Function Block
	Composing MATLAB Language Function in Simulink Model
	MATLAB Function Block with Data Type Override
	Fixed-Point Data Types with MATLAB Function Block
	Specifying Fixed-Point Parameters in the Model Explorer
	Using fimath Objects in MATLAB Function Blocks
	Sharing Models with Fixed-Point MATLAB Function Blocks

	Generate Fixed-Point FIR Code Using MATLAB Function Block
	Program the MATLAB Function Block
	Prepare the Inputs
	Create the Model
	Define the fimath Object Using the Model Explorer
	Run the Simulation

	Fixed-Point FFT Code Example Parameter Values
	Accelerate Code for Variable-Size Data
	Disable Support for Variable-Size Data
	Control Dynamic Memory Allocation
	Accelerate Code for MATLAB Functions with Variable-Size Data
	Accelerate Code for a MATLAB Function That Expands a Vector in a
	About the MATLAB Function uniquetol
	Step 1: Add Compilation Directive for Code Generation
	Step 2: Address Issues Detected by the Code Analyzer
	Step 3: Generate MEX Code
	What do these command-line options mean?
	Step 4: Fix the Size Mismatch Error
	Step 5: Compare Execution Speed of MEX Function to Original Code

	Propose Fixed-Point Data Types in a MATLAB Coder Project
	Prerequisites
	Create a New Folder and Copy Relevant Files
	The fun_with_matlab Function
	Check Code Generation Readiness
	Create and set up a MATLAB Coder Project
	About the fun_with_matlab_test Script
	Contents of fun_with_matlab_test
	Define Input Types
	Build Instrumented MEX Function
	View Data Type Proposal Settings
	Run Simulation
	View Code Generation Report
	Next Steps
	Apply Fixed-Point Data Types in a MATLAB Coder Project
	Prerequisites
	Create a New Folder and Copy Relevant Files
	The fun_with_fi Function
	Create and set up a MATLAB Coder Project
	Define Input Types
	The fun_with_fi_test Script
	Run Simulation
	Code Generation Readiness Tool
	What Information Does the Code Generation Readiness Tool Provide
	Summary Tab
	Code Structure Tab
	Code Distribution
	Call Tree

	See Also

	Check Code Using the Code Generation Readiness Tool
	Run Code Generation Readiness Tool at the Command Line
	Run the Code Generation Readiness Tool From the Current Folder B
	See Also

	Interoperability with Other Products
	fi Objects with Simulink
	Reading Fixed-Point Data from the Workspace
	Writing Fixed-Point Data to the Workspace
	Setting the Value and Data Type of Block Parameters
	Logging Fixed-Point Signals
	Accessing Fixed-Point Block Data During Simulation

	fi Objects with DSP System Toolbox
	Reading Fixed-Point Signals from the Workspace
	Writing Fixed-Point Signals to the Workspace
	fi Objects with dfilt Objects

	Ways to Generate Code

	Calling Functions for Code Generation
	Resolution of Function Calls in MATLAB Generated Code
	Key Points About Resolving Function Calls
	Compile Path Search Order
	When to Use the Code Generation Path

	Resolution of Files Types on Code Generation Path
	Compilation Directive %#codegen
	Call Local Functions
	Call Supported Toolbox Functions
	Call MATLAB Functions
	Declaring MATLAB Functions as Extrinsic Functions
	Declaring Extrinsic Functions
	When to Use the coder.extrinsic Construct
	Rules for Extrinsic Function Declarations
	Scope of Extrinsic Function Declarations

	Calling MATLAB Functions Using feval
	How MATLAB Resolves Extrinsic Functions During Simulation
	Working with mxArrays
	Converting mxArrays to Known Types

	Restrictions on Extrinsic Functions for Code Generation
	Limit on Function Arguments

	Code Generation for MATLAB Classes
	MATLAB Classes Definition for Code Generation
	Language Limitations
	Code Generation Features Not Compatible with Classes
	Defining Class Properties for Code Generation
	Calls to Base Class Constructor

	Classes That Support Code Generation
	Memory Allocation Requirements
	Generate Code for MATLAB Value Classes
	Generate Code for MATLAB Handle Classes and System Objects
	MATLAB Classes in Code Generation Reports
	What Reports Tell You About Classes
	How Classes Appear in Code Generation Reports
	In the MATLAB Code Tab
	In the Variables Tab
	In the Call Stack

	How to Generate a Code Generation Report

	Troubleshooting Issues with MATLAB Classes
	Class class does not have a property with name name
	Workaround

	Defining Data for Code Generation
	Data Definition for Code Generation
	Code Generation for Complex Data
	Restrictions When Defining Complex Variables
	Expressions Containing Complex Operands Yield Complex Results

	Code Generation for Characters

	Defining Functions for Code Generation
	Specify Variable Numbers of Arguments
	Supported Index Expressions
	Apply Operations to a Variable Number of Arguments
	When to Force Loop Unrolling
	Using Variable Numbers of Arguments in a for-Loop
	Key Points About the Example

	Implement Wrapper Functions
	Passing Variable Numbers of Arguments from One Function to Anoth
	Key Points About the Example

	Pass Property/Value Pairs
	Variable Length Argument Lists for Code Generation
	Do not use varargin or varargout in top-level functions
	Use curly braces {} to index into the argument list
	Verify that indices can be computed at compile time
	Do not write to varargin

	Defining MATLAB Variables for C/C++ Code Generation
	Variables Definition for Code Generation
	Best Practices for Defining Variables for C/C++ Code Generation
	Define Variables By Assignment Before Using Them
	Defining a Variable for Multiple Execution Paths
	Defining All Fields in a Structure
	Use Caution When Reassigning Variables
	Use Type Cast Operators in Variable Definitions
	Define Matrices Before Assigning Indexed Variables

	Eliminate Redundant Copies of Variables in Generated Code
	When Redundant Copies Occur
	How to Eliminate Redundant Copies by Defining Uninitialized Vari
	What happens if you access uninitialized data?
	Defining Uninitialized Variables

	Reassignment of Variable Properties
	Dynamically sized variables
	Variables reused in the code for different purposes
	Define and Initialize Persistent Variables
	Reuse the Same Variable with Different Properties
	When You Can Reuse the Same Variable with Different Properties
	When You Cannot Reuse Variables
	Variable Reuse in an if Statement
	Limitations of Variable Reuse

	Avoid Overflows in for-Loops
	Supported Variable Types

	Design Considerations for C/C++ Code Generation
	When to Generate Code from MATLAB Algorithms
	When Not to Generate Code from MATLAB Algorithms

	Which Code Generation Feature to Use
	Prerequisites for C/C++ Code Generation from MATLAB
	MATLAB Code Design Considerations for Code Generation
	See Also

	Expected Differences in Behavior After Compiling MATLAB Code
	Why Are There Differences?
	Character Size
	Order of Evaluation in Expressions
	Termination Behavior
	Size of Variable-Size N-D Arrays
	Size of Empty Arrays
	Floating-Point Numerical Results
	When computer hardware uses extended precision registers
	For certain advanced library functions
	For implementation of BLAS library functions
	NaN and Infinity Patterns
	Code Generation Target
	MATLAB Class Initial Values
	Variable-Size Support for Code Generation

	MATLAB Language Features Supported for C/C++ Code Generation
	MATLAB Language Features Not Supported for C/C++ Code Generation

	Code Generation for Enumerated Data
	Enumerated Data Definition for Code Generation
	Enumerated Types Supported for Code Generation
	Enumerated Type Based on int32
	Syntax
	Example
	How to Use

	Enumerated Type Based on Simulink.IntEnumType
	Syntax
	Example
	How to Use

	When to Use Enumerated Data for Code Generation
	Generate Code for Enumerated Data from MATLAB Algorithms
	How to Generate Code for Enumerated Data

	Generate Code for Enumerated Data from MATLAB Function Blocks
	Define Enumerated Data for Code Generation
	Naming Enumerated Types for Code Generation

	Instantiate Enumerated Types for Code Generation
	Operations on Enumerated Data Allowed for Code Generation
	Assignment Operator, =
	Relational Operators, < > <= >= == ~=
	Cast Operation
	Indexing Operation
	Control Flow Statements: if, switch, while

	Include Enumerated Data in Control Flow Statements
	if Statement with Enumerated Data Types
	Class Definition: sysMode
	Class Definition: LEDcolor
	MATLAB Function: displayState
	Build and Test a MEX Function for displayState

	switch Statement with Enumerated Data Types
	Class Definition: VCRState
	Class Definition: VCRButton
	MATLAB Function: VCR
	Build and Test a MEX Function for VCR

	while Statement with Enumerated Data Types
	Class Definition: State
	MATLAB Function: Setup
	Build and Test a MEX Executable for Setup

	Customize Enumerated Types Based on int32
	About Customizing Enumerated Types
	Specify a Default Enumerated Value
	Specify a Header File

	Customize Enumerated Types Based on Simulink.IntEnumType
	Control Names of Enumerated Type Values in Generated Code
	Change and Reload Enumerated Data Types
	Restrictions on Use of Enumerated Data in for-Loops
	Do not use enumerated data as the loop counter variable in for-
	Toolbox Functions That Support Enumerated Types for Code Generat

	Code Generation for Function Handles
	Function Handles Definition for Code Generation
	Define and Pass Function Handles for Code Generation
	Define and Pass Function Handles for Code Acceleration
	Function Handle Limitations for Code Generation
	Function handles must be scalar values.
	You cannot use the same bound variable to reference different fu
	You cannot pass function handles to or from extrinsic functions.
	You cannot pass function handles to or from primary functions.
	You cannot view function handles from the debugger

	Generating Efficient and Reusable Code
	Unroll for-Loops
	Inline Functions
	Eliminate Redundant Copies of Function Inputs
	Generate Reusable Code

	Code Generation for MATLAB Structures
	Structure Definition for Code Generation
	Structure Operations Allowed for Code Generation
	Define Scalar Structures for Code Generation
	Restrictions When Using struct
	Restrictions When Defining Scalar Structures by Assignment
	Adding Fields in Consistent Order on Each Control Flow Path
	Restriction on Adding New Fields After First Use

	Define Arrays of Structures for Code Generation
	Ensuring Consistency of Fields
	Using repmat to Define an Array of Structures with Consistent Fi
	Defining an Array of Structures Using Concatenation

	Make Structures Persistent
	Index Substructures and Fields
	Reference substructure field values individually using dot notat
	Reference field values individually in structure arrays
	Do not reference fields dynamically
	Assign Values to Structures and Fields
	Field properties must be consistent across structure-to-structur
	Do not use field values as constants
	Do not assign mxArrays to structures
	Pass Large Structures as Input Parameters

	Functions Supported for Code Generation
	Functions Supported for Code Generation — Alphabetical List
	Functions Supported for Code Generation — Categorical List
	Aerospace Toolbox Functions
	Arithmetic Operator Functions
	Bit-Wise Operation Functions
	Casting Functions
	Communications System Toolbox Functions
	Complex Number Functions
	Computer Vision System Toolbox Functions
	Data Type Functions
	Derivative and Integral Functions
	Discrete Math Functions
	Error Handling Functions
	Exponential Functions
	Filtering and Convolution Functions
	Fixed-Point Toolbox Functions
	Histogram Functions
	Image Processing Toolbox Functions
	Input and Output Functions
	Interpolation and Computational Geometry
	Linear Algebra
	Logical Operator Functions
	MATLAB Compiler Functions
	Matrix and Array Functions
	Nonlinear Numerical Methods
	Polynomial Functions
	Relational Operator Functions
	Rounding and Remainder Functions
	Set Functions
	Signal Processing Functions in MATLAB
	Signal Processing Toolbox Functions
	Special Values
	Specialized Math
	Statistical Functions
	String Functions
	Structure Functions
	Trigonometric Functions

	Code Generation for Variable-Size Data
	What Is Variable-Size Data?
	Variable-Size Data Definition for Code Generation
	Bounded Versus Unbounded Variable-Size Data
	Control Memory Allocation of Variable-Size Data
	Specify Variable-Size Data Without Dynamic Memory Allocation
	Fixing Upper Bounds Errors
	Specifying Upper Bounds for Variable-Size Data
	When to Specify Upper Bounds for Variable-Size Data
	Specifying Upper Bounds on the Command Line for Variable-Size In
	Specifying Unknown Upper Bounds for Variable-Size Inputs
	Specifying Upper Bounds for Local Variable-Size Data
	Using a Matrix Constructor with Nonconstant Dimensions

	Variable-Size Data in Code Generation Reports
	What Reports Tell You About Size
	How Size Appears in Code Generation Reports
	How to Generate a Code Generation Report

	Define Variable-Size Data for Code Generation
	When to Define Variable-Size Data Explicitly
	Using a Matrix Constructor with Nonconstant Dimensions
	Inferring Variable Size from Multiple Assignments
	Inferring Upper Bounds from Multiple Definitions with Different

	Defining Variable-Size Data Explicitly Using coder.varsize
	Specifying Which Dimensions Vary
	Allowing a Variable to Grow After Defining Fixed Dimensions
	Defining Variable-Size Matrices with Singleton Dimensions
	Defining Variable-Size Structure Fields

	C Code Interface for Arrays
	C Code Interface for Statically Allocated Arrays
	C Code Interface for Dynamically Allocated Arrays
	emxArray Structure Definition
	C Code Interface for Structure Fields

	Utility Functions for Creating emxArray Data Structures

	Troubleshooting Issues with Variable-Size Data
	Diagnosing and Fixing Size Mismatch Errors
	Assigning Variable-Size Matrices to Fixed-Size Matrices
	Empty Matrix Reshaped to Match Variable-Size Specification
	Performing Binary Operations on Fixed and Variable-Size Operands
	Diagnosing and Fixing Errors in Detecting Upper Bounds
	Using Nonconstant Dimensions in a Matrix Constructor

	Incompatibilities with MATLAB in Variable-Size Support for Code
	Incompatibility with MATLAB for Scalar Expansion
	Workaround

	Incompatibility with MATLAB in Determining Size of Variable-Size
	Workarounds

	Incompatibility with MATLAB in Determining Size of Empty Arrays
	Workaround

	Incompatibility with MATLAB in Vector-Vector Indexing
	Workaround

	Incompatibility with MATLAB in Matrix Indexing Operations for Co
	Dynamic Memory Allocation Not Supported for MATLAB Function Bloc

	Restrictions on Variable Sizing in Toolbox Functions Supported f
	Common Restrictions
	Variable-length vector restriction
	Automatic dimension restriction
	Array-to-vector restriction
	Array-to-scalar restriction

	Toolbox Functions with Variable Sizing Restrictions

	Primary Functions
	Primary Function Input Specification
	When to Specify Input Properties
	Why You Must Specify Input Properties
	Properties to Specify
	Default Property Values
	Supported Classes

	Rules for Specifying Properties of Primary Inputs
	Methods for Defining Properties of Primary Inputs
	Define Input Properties by Example at the Command Line
	Command Line Option -args
	Rules for Using the -args Option
	Specifying Properties of Primary Inputs by Example at the Comman
	Specifying Properties of Primary Fixed-Point Inputs by Example a

	Specify Constant Inputs at the Command Line
	Calling Functions with Constant Inputs
	Specifying a Structure as a Constant Input

	Specify Variable-Size Inputs at the Command Line
	Specifying a Variable-Size Vector Input

	Define Input Properties Programmatically in the MATLAB File
	How to Use assert with MATLAB Coder
	Specify Any Class
	Specify fi Class
	Specify Structure Class
	Specify Fixed Size
	Specify Scalar Size
	Specify Upper Bounds for Variable-Size Inputs
	Specify Inputs with Fixed- and Variable-Size Dimensions
	Specify Size of Individual Dimensions
	Specify Real Input
	Specify Complex Input
	Specify numerictype of Fixed-Point Input
	Specify fimath of Fixed-Point Input
	Specify Multiple Properties of Input

	Rules for Using assert Function
	Specifying General Properties of Primary Inputs
	Specifying Properties of Primary Fixed-Point Inputs
	Specifying Class and Size of Scalar Structure
	Specifying Class and Size of Structure Array

	Checking Code is Suitable for Code Generation
	Check Code Using the MATLAB Code Analyzer
	Fix Errors Detected at Code Generation Time
	See Also

	System Objects Supported for Code Generation
	System Objects Supported for Code Generation
	Code Generation for System Objects
	Computer Vision System Toolbox System Objects
	Communications System Toolbox System Objects
	DSP System Toolbox System Objects

	System Objects
	Create System Objects
	Create a System object
	Define a New System object
	Change a System object Property
	Check if a System object Property Has Changed
	Run a System object
	Display Available System Objects

	Set Up System Objects
	Create a New System object
	Retrieve System object Property Values
	Example

	Set System object Property Values
	Set Properties for a New System object
	Set Properties for an Existing System object
	Use Value-Only Inputs

	Process Data Using System Objects
	What are System object Methods?
	The Step Method
	Calculate the Effect of Propagating a Signal in Free Space

	Common Methods
	Advantages of Using Methods

	Tuning System object Properties in MATLAB
	Understand System object Modes
	Change Properties While Running System Objects
	Change System object Input Complexity or Dimensions

	Find Help and Examples for System Objects
	Use System Objects in MATLAB Code Generation
	Considerations for Using System Objects in Generated Code
	Use System Objects with codegen
	Use System Objects with the MATLAB Function Block
	Use System Objects with MATLAB Compiler

	Index

	tables
	Global Data Synchronization Options
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specify properties for each field according to its class
	Supported Computer Vision System Toolbox System Objects
	Supported Communications System Toolbox System Objects
	Supported DSP System Toolbox System Objects

